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1 Introduction

In the mid-twentieth century, the fundamental concept of optimization emerged as a corner-
stone in computational mathematics and computer science, significantly touching various

domains such as engineering, management, physics, and machine learning. Researchers from
all disciplines have embraced optimization as an essential tool for addressing complex problems
in their respective fields. For instance, engineers employ optimization techniques to generate
the best control commands for complex dynamical systems, design efficient transportation sys-
tems, and improve mechanical systems’ performance [1]. In finance, analysts apply optimization
approaches to boost earnings and reduce risks [2]. In machine learning, solving optimization
problems is essential for training models, fine-tuning parameters, and optimizing neural net-
work designs [3]. As a result, the search for successful optimization solutions goes beyond basic
convenience; it is a strategic priority for businesses, academics, and governments alike. These
strategies not only speed up decision-making processes, but they also promote innovation across
other areas. Thus, prioritizing the progress of such approaches becomes critical to fulfilling the
rapidly evolving demands within our global society. Addressing a specific optimization problem
with the most efficient algorithms remains a significant challenge in optimization research. At-
tempting to devise a universal method for all optimization problems is overly ambitious given
their extensive range and generality. Embracing this perspective allows researchers to tailor
specialized methodologies to the complexities inherent in some specific class of optimization
problems, enhancing effectiveness and expanding practical applications across various fields.

Many optimization problems can be mathematically described as the minimization of a given
function, often referred to as an objective or cost function, under a set of constraints. The
complicated nature of these problems, as described by their complex structures and constraints,
highlights the pressing need for creative and efficient problem-solving approaches. For example,
in game theory, one needs to identify a strategy that yields the best outcome under worst-case
conditions. This is characterized as a min-max problem, because the goal is to reduce the largest
possible loss.

Structured optimization problems can include scenarios like the sum of a convex function and
a composition of a convex merit function with a smooth map, such as in min-max optimiza-
tion problems, which pose significant challenges, particularly when the merit function is only
convex. In this case, the optimization process becomes intricate due to the complexity of the
problem. However, the difficulty diminishes when the merit exhibits specific structural char-
acteristics or has additional properties beyond convexity, which can enable more efficient and
effective optimization algorithms. These additional properties can provide valuable insights into
the problem structure, guide the optimization algorithms towards better solutions, and poten-
tially overcome the complexities inherent in the optimization process. Thus, while optimization
problems may provide formidable challenges, exploiting the properties of the objective function
can significantly facilitate their resolution.

First-order (i.e., gradient descent-based) approaches (GD) have become known as an important
tool for solving nonlinear problems in optimization. Gradient descent method was introduced by
Cauchy in 1847 [4] and later many variants have been proposed (conjugate gradient, accelerated
gradient, stochastic gradient, etc). The extensive research on the convergence of first-order
methods started in the 1950s; see, e.g., Polyak’s paper from 1963 on the gradient method [5]
and the subgradient method as discovered by Shor [6] in 1962. Each iteration of the GD scheme
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Chapter 1. Introduction

computes only a gradient of an objective function and returns a solution with a specified accuracy.
First-order optimisation has advanced tremendously, and despite many great achievements, its
convergence rate is slow due to the fundamental theoretical limitations (e.g., the rates depend
on the condition number of the objective function) that are represented by the lower complexity
bounds. This issue motivates the scientists to propose versions of this method by modifying
it to fit specific classes of problems (e.g., projected gradient, stochastic gradient methods, etc)
or by improving the convergence speed (e.g., conjugate gradient, accelerate gradient, Gauss-
Newton, etc). As such, a significant portion of research has been devoted to examining this
component [7, 8]. In convex optimization, first-order methods generally exhibit a convergence
rate of order O(k−1) when measured by function values, where k is the iteration count. However,
for nonconvex problems, the convergence rate in the norm of the gradient is of orderO(k−1/2), [8].

Second-order methods are known for being powerful algorithms due to their ability to solve ill-
conditioned problems. For example, in the classical Newton method, one needs to approximate
the objective by its second-order Taylor approximation. Compared to the gradient method,
Newton method has local quadratic convergence in a neighbourhood of the solution. However,
the global behaviour of the Newton method has remained an active area of research for several
decades. It is known that the classical Newton method with a unit stepsize may not converge
globally, even if the problem is strongly convex (see Example 1.4.3 in [9]). A significant ad-
vancement in second-order optimization theory occurred following the paper [10] by Nesterov
and Polyak in 2006, where the authors introduced a cubic regularization of Newton’s method
along with comprehensive global complexity guarantees. The fundamental concept proposed
in [10] revolves around employing a global upper approximation model using the second-order
Taylor polynomial and a cubic regularization term. The authors demonstrated that the cubic
Newton algorithm offers global convergence rates compared to conventional Newton method.
In convex settings, the convergence rate of the cubic Newton algorithm in function values is of
order O(k−2), see [10], while in nonconvex settings, the convergence rate in the norm of the
gradient is of order O

(
k−

2
3

)
[10], which are both faster than for the first-order methods.

A natural way to ensure faster convergence rates, extending beyond both gradient and second-
order methods, is to use higher-order information (derivatives) to build sophisticated higher-
order Taylor models. The unpublished preprint [11] stands as the first paper deriving theoretical
results of the higher-order schemes for convex problems. However the extensive complexity as-
sociated with minimising nonconvex multivariate polynomials has posed significant challenges,
rendering this initial effort unsuccessful. Despite these obstacles, a ray of hope emerged through
the groundbreaking research of Nesterov in [12]. Specifically, Nesterov demonstrated that by
appropriately regularizing the Taylor approximation, the auxiliary subproblem remains convex
and can be solved efficiently, thereby offering a promising avenue for tackling convex uncon-
strained smooth problems. The convergence rate for convex problems in function values is of
order O (k−p). This significant result not only underscores the potential of higher-order meth-
ods but also serves as a catalyst for further exploration and refinement within the optimization
community. As researchers delve deeper into the intricacies of optimization methods, particu-
larly within the nonconvex setting [13, 14], a notable focus has been placed on analyzing the
complexity of high-order approaches. These approaches aim to generate solutions with small
gradient norms, a crucial aspect for navigating nonconvex optimization landscapes effectively.
In addressing this challenge, it is essential for such methods to maintain a satisfactory adherence
to first-order optimality conditions and ensure local reductions in the objective function. How-
ever, achieving this balance proves to be inherently challenging when dealing with nonconvex
functions. Convergence guarantees, particularly in terms of the norm of the gradient, have been
established to be of order O

(
k
− p

p+1

)
. Increasing the order of the oracle, denoted as p, does offer

some advantages, albeit not as pronounced as in convex settings. Despite the complexities in-
volved, ongoing research efforts continue to explore the performance of high-order optimization
methods in nonconvex scenarios, striving towards more robust and efficient techniques.
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Chapter 1. Introduction

Optimization methods based on gradient information are widely used in applications where high
accuracy is not desired, such as machine learning, data analysis, signal processing and statistics
[15, 16, 17, 18]. The standard convergence analysis of gradient-based methods requires the avail-
ability of the exact first-order information. Namely, the oracle must provide at each given point
the exact values of the function and of its gradient. However, in many optimization problems,
one doesn’t have access to exact gradients, e.g., the gradient is obtained by solving another
optimization subproblem. In practice, we are often only able to solve these subproblems ap-
proximately. Hence, in that context, numerical methods solving the outer problem are provided
with inexact first-order information. This led us to also investigate the behavior of first-order
methods working with an inexact information.

1.1 Contributions

The main objective of this thesis is to build and analyze efficient high-order optimization meth-
ods designed to effectively address the challenges posed by increasingly complex and structured
problem landscapes. Specifically, we focus on composite optimization problems that involve
a sum of two terms, where the first term is a composition between a convex merit function
and smooth maps. These types of problems frequently arise in various applications, including
complex systems, game theory and control. We are interested in designing implementable al-
gorithms and deriving explicit convergence rates, having the goal of gaining both theoretical
and practical justification for our approaches. Hereafter, we outlines the main theoretical and
numerical contributions of this thesis, primarily focusing on the results from Chapters 3 through
7. More specifically, the specific contributions of this thesis are as follows:

We provide an algorithmic framework in Chapter 3 based on the notion of higher-order upper
bound approximations for solving composite problems, where the first term is a composition
between a convex merit function and maps. We consider general properties for our objects, e.g.,
the maps, can be smooth or nonsmooth, convex or nonconvex and the merit function is convex,
subhomogeneous, nondecreasing and has full domain. Our framework consists of replacing the
maps by a higher-order surrogate (majorizer), leading to a General Composite Higher-Order
minimization algorithm, which we call GCHO. This majorization-minimization approach is rele-
vant as it yields an array of algorithms, each of which is associated with the specific properties of
the maps and the corresponding surrogate, and it provides a unified convergence analysis. Note
that most of our variants of GCHO for p > 1 were not explicitly considered in the literature
before (at least in the nonconvex settings).

We derive convergence guarantees for the GCHO algorithm when the upper bound approximate
the maps from the objective function up to an error that is p ≥ 1 times differentiable and has a
Lipschitz continuous p derivative; we call such upper bounds composite higher-order surrogate
functions. More precisely, on composite (possibly nonsmooth) nonconvex problems we prove for
GCHO, with the help of a new auxiliary sequence, convergence rates O

(
k
− p

p+1

)
in terms of

first-order optimality conditions. We also characterize the convergence rate of GCHO algorithm
locally, in terms of function values, under the Kurdyka-Lojasiewicz (KL) property. Our result
show that the convergence behavior of GCHO ranges from sublinear to linear depending on
the parameter of the underlying KL geometry. Moreover, on general (possibly nonsmooth)
composite convex problems (i.e., f is convex function) our algorithm achieves global sublinear
convergence rate of order O (k−p) in function values. We summaries our convergence results in
Table 1.1. Finally, for p = 2 and the merit function is the maximum function, we show that
the subproblem, even in the nonconvex case, is equivalent to minimizing an explicitly written
convex function over a convex set that can be solve using efficient convex optimization tools.

Besides providing a general framework for the design and analysis of composite higher-order
methods, in special cases, where complexity bounds are known for some particular algorithms,

3



Chapter 1. Introduction

our convergence results recover the existing bounds. For example, from our convergence analysis
one can easily recover the convergence bounds of higher-order algorithms from [12] for uncon-
strained minimization and from [12, 19, 20] for simple composite minimization. Furthermore, in
the composite convex case we recover the convergence bounds from [21] for p = 1 and particular
choices of g and from [22] for p ≥ 1. To the best of our knowledge, this is the first complete
work dealing with composite problems in the nonconvex and nonsmooth settings, and explicitly
deriving convergence bounds for higher-order majorization-minimization algorithms (including
convergence under KL). The content of this chapter is based on paper [23].

Assumptions convergence rates Theorem

nonconvex case 3.2.1 and 3.3.2
∃(yk)k≥0 close to (xk)k≥0 s.t.
min
j=0:k

dist(0, ∂f(yj)) ≤ O
(
k
− p

p+1

) 3.3.6

3.2.1, 3.3.2, 3.3.9 and KL f(xk) → f∗ sublinear or linear 3.3.10
convex case 3.2.1 and f convex f(xk)− f∗ ≤ O

(
k−p

)
3.3.11

Table 1.1: Convergence results for the algorithm presented in Chapter 3.

Chapter 4 introduces a new moving Taylor approximations (MTA) method designed to tackle
optimization problems with functional constraints. Our framework is flexible in the sense that
we can approximate the objective function and the constraints with higher-order Taylor approx-
imations of different degrees (i.e., we can approximate the smooth part of the objective function
with a Taylor approximation of degree p and the constraints with a Taylor approximation of
degree q). We derive convergence guarantees for MTA algorithm for (non)convex problems with
smooth (non)convex functional constraints. More precisely, when the data is nonconvex, we
show that the iterates generated by MTA converge to a KKT point and the convergence rate is
of order O

(
k
−min

(
p

p+1
, q
q+1

))
, where k is the iteration counter and p and q are the degrees of the

Taylor approximations for objective and constraints, respectively. When the data of the problem
are semialgebraic, we derive linear/sublinear convergence rates in the iterates (depending on the
parameter of the KL property). Moreover, for convex problems, we derive a global sublinear
convergence rate of order O

(
k−min(p,q)) in function values, and additionally, if the objective

function is uniformly convex, we derive a superlinear/linear convergence rate (depending on the
degree of the uniform convexity). The convergence rates obtained are summarized in Table 1.2.
Note that the subproblem we need to solve at each iteration of MTA is usually nonconvex and
it can have local minima. However, we show for p, q ≤ 2 that our approach is implementable,
since this subproblem is equivalent to minimizing an explicitly written convex function over a
convex set that can be solve using efficient convex optimization tools. We believe that this is an
additional step towards practical implementation of higher-order (tensor) methods in smooth
nonconvex optimization problems with smooth nonconvex functional constraints.

It is important to note that in special cases, where complexity bounds are known for some
particular algorithms, our convergence results recover the existing bounds. For example, for
p = q = 1, we recover the convergence results obtained in [24, 25] in the nonconvex setting.
We also recover the sublinear convergence rate in the convex case derived in [21] for p = q = 1,
as well as the linear convergence rate in function values obtained in [22], but we only assume
uniform convexity on the objective and not on the constraints. The content of this chapter is
based on paper [26].
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Chapter 1. Introduction

Assumptions convergence rates Theorem

nonconvex 4.2.1, 4.2.2 and 4.2.3
Measure of optimality (see section 4.3.1):

min
i=1:k

M(xi) ≤ O
(
k
− min

(
p

p+1
, q
q+1

)) 4.3.4

4.2.1, 4.2.2, 4.2.3 and KL xk → x∗ sublinearly or linearly 4.3.9
convex 4.2.1, 4.2.2 and 4.2.3 F (xk)− F ∗ ≤ O

(
k− min(p,q)

)
4.4.1

uniformly convex 4.2.1, 4.2.2 and 4.2.3 F (xk) → F ∗ linearly or superlinearly 4.4.2

Table 1.2: Convergence results for the algorithm presented in Chapter 4.

Chapter 5 presents a regularized higher-order Taylor approximation method (referred to as
RHOTA) for solving composite problems, where the first term involves a convex Lipschitz func-
tion composed with a smooth map. The most representative class of problems that fit into this
framework is the nonlinear least-squares. At each iteration of RHOTA, a higher-order composite
model is constructed, which is then minimized to compute the next iteration. An adaptive vari-
ant of RHOTA is also introduced. We establish worst-case complexity bounds for the RHOTA
algorithm. Specifically, we demonstrate that the iterates generated by RHOTA converge to a
near-stationary point, and the convergence rate is of the order O

(
k
− p

p+1

)
. When the data of

the problem are semialgebraic or, more generally, satisfy Kurdyka-Lojasiewicz (KL) property,
we derive linear/sublinear convergence rates in function values, depending on the parameter
of the KL condition. When the merit function is the norm, i.e., ‖ · ‖, we present an efficient
implementation of RHOTA algorithm when the Taylor approximation is of order p = 2. In
particular, we show that the resulting nonconvex subproblem is equivalent to minimizing an
explicitly written convex function over a convex set and, thus, can be solved using standard
convex tools. This represents a significant advancement towards the practical implementation
of higher-order methods for solving nonlinear least-squares problems.

We also analyze the convergence behavior of RHOTA algorithm when employed to address sys-
tems of nonlinear equations and optimization problems featuring nonlinear equality constraints.
For these problems, we introduce non-conservative constraints qualification conditions that guar-
antee convergence of RHOTA. More precisely, for nonlinear system of equations, we show that
our scheme solves this problem in a finite number of iterations under a non-degenerate Jacobian.
Additionally, for optimization problems with nonlinear equality constraints, we show that the
proposed algorithms converges to a KKT point with a rate of order O

(
k
− p

p+1

)
. The convergence

rates obtained are summarized in Table 1.3. The content of this chapter is based on paper [27].

Problem Assumptions convergence rates Theorem

(5.4) 5.2.1
∃(yk)k≥0 close to (xk)k≥0 s.t.
min
j=0:k

dist(0, ∂f(yj)) ≤ O
(
k
− p

p+1

) 5.3.2

(5.19) 5.2.1 and 5.20 Exists finite k < ∞: F (xk) = 0 or F (yk) = 0 5.5.1
(5.22) 5.2.1 and 5.24 KKT point of order O

(
k
− p

p+1

)
5.5.2

Table 1.3: Convergence results for the algorithm presented in Chapter 5.

Chapter 6 explores the minimization of simple composite problems in which exact first-order
information for the smooth component is unavailable. We propose a suitable definition of in-
exactness for a first-order oracle applied to the smooth component, incorporating a degree of
uncertainty represented by a parameter 0 ≤ q < 2. Our definition is less conservative than
those found in the existing literature, and it can be viewed as an interpolation between fully
exact and the existing inexact first-order oracle definitions. We provide several examples that
fit within this framework of an inexact first-order oracle, such as approximate gradients or weak
level of smoothness, and show that, under this new definition of inexactness, we can remove

5
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the boundedness assumption of the domain of the composite problem, which is usually em-
ployed in the literature. We then consider an inexact proximal gradient algorithm based on
the inexact first-order oracle and provide convergence rates for nonconvex and convex compos-
ite problems. The rates for nonconvex composite problems are O

(
k−1 + δ

2
2−q

)
for q ∈ [0, 1)

and O
(
k−1 + δk−q/2 + δ2k−(q−1)

)
for q ∈ [1, 2). For convex composite problems, the conver-

gence rate is of order O
(
k−1 + δk−q/2

)
for q ∈ [0, 2). Additionally, we derive convergence rates

for a fast inexact proximal gradient algorithm for solving convex composite problems of order
O(k−2 + δk−(3q−2)/2).

One can observe that as q increases, the convergence rates improve. For the inexact proximal
gradient algorithm, the power of δ in the convergence estimate is higher for q ∈ (0, 1] compared
to q = 0, while for q ≥ 1, the coefficients of δ decrease with increasing iterations. In the case of
the fast inexact proximal gradient algorithm, there’s no error accumulation for q ≥ 2/3. This
suggests that choosing an inexact first-order oracle with a degree of q > 0 is advantageous,
allowing the use of less accurate approximations for the (sub)gradient of F as q increases.

The convergence rates obtained are summarized in Table 1.4. Numerical simulations on non-
convex optimization problems, such as those in image restoration, underscore the efficacy of the
inexact proximal gradient scheme, particularly as the parameter q is increased. These results
support our theoretical findings, indicating that significant performance improvements can be
achieved with larger values of q. The content of this chapter is based on paper [28].

convergence rates Theorem

nonconvex case

Gradient mapping:
if 0 ≤ q < 2:
min
j=0:k

∥gj + pj+1∥2 ≤ O
(

1
k+1

)
+ (q + 1)(2− q)L

2−2q
2−q δ

2
2−q .

if 1 ≤ q < 2:
min
j=0:k

∥gj + pj+1∥2 ≤ O
(

1
k+1

)
+O

(
1

(k+1)q/2

)
+ q(2−q)δ2L1−q(2∆0)

q−1

(k+1)q−1 .

6.3.3

convex case

f(x̂k)− f∗ ≤ O
(

1
k+1

)
+O

(
1

kq/2

)
.

Accelerated scheme:

f(yk)− f∗ ≤ O
(

LR2

k2

)
+O

(
Rq

k
3q
2

−1
δ

)
.

6.3.6
6.3.7

Table 1.4: Convergence results for the algorithm presented in Chapter 6.

In Chapter 7, we explore several applications, including power flow analysis, phase retrieval,
and output feedback control problems. We demonstrate how these problems, such as steady-
state power flow equations [29], phase retrieval [30, 31, 32], and output feedback control [33,
34], can be effectively framed within the context of composite optimization problems. Thus, our
algorithms from previous chapters (especially the one, called RHOTA, from Chapter 5) can be
used to solve such applications.

Regarding phase retrieval, RHOTA algorithm for p = 2 corresponds to a higher-order proximal
point algorithm (HOPP), and our analysis indicates that HOPP converges quickly for this appli-
cation. Furthermore, RHOTA aligns with the regularized Gauss-Newton algorithm presented in
[35] for p = 1, when addressing the power flow analysis problem. Finally, we present numerical
simulations demonstrating the effectiveness of RHOTA algorithm in solving output feedback
control problems.

Our numerical results on various IEEE bus cases [36], image recovery from handwritten digits
in the MNIST library [37], and output feedback control for linear systems from the COMPleib
library [34] indicate the superior performance of our proposed algorithms compared to some
state-of-the-art optimization approaches [31, 38] and specialized software [33] designed for these
applications.
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Chapter 1. Introduction

1.2 Collaborations

This PhD project is part of the Marie Skłodowska-Curie Action (MSCA) Innovative Training
Network (ITN) TraDE-OPT (ID 861137). Following the mobility requirements of ITNs, this
project included a three-month secondment from September to November 2021, during which I
collaborated with Professor Silvia Villa from Università degli Studi di Genova, Italy, to develop
higher-order methods for structured nonconvex optimization problems. Subsequently, from April
to July 2022, I completed a secondment at Université catholique de Louvain, Belgium, under
the supervision of Professor François Glineur. During this time, we introduced and analyzed
an inexact first-order oracle for solving composite minimization problems. The results of this
collaboration are presented in Chapter 6. Finally, between November and December 2023,
I undertook two months industrial training at the company N-SIDE, Belgium. During this
internship and in collaboration with Mehdi Madani and Pierre Artoisenet, our main objective
was to develop efficient optimization techniques for solving steady-state power flow equations,
with a specific focus on the European high-voltage transmission network. Specifically, we aim to
adapt and extend the algorithm introduced in [35, 27] to handle large-scale problems effectively
(this is work in progress).

1.3 Publications

The findings presented in this thesis are contained in the following papers:

• Journal papers:

1. Y. Nabou and I. Necoara, Efficiency of higher-order algorithms for minimizing
composite functions, Computational Optimization and Applications, 87: 441–473,
2023 (DOI: 10.1007/s10589-023-00533-9).

2. Y. Nabou, F. Glineur and I. Necoara, Proximal gradient methods with inexact
oracle of degree q for composite optimization, Optimization Letters, 2024 (DOI:
10.1007/s11590-024-02118-9).

3. Y. Nabou and I. Necoara, Moving higher-order Taylor approximations method for
smooth constrained minimization problems, under review in SIAM Journal on Opti-
mization, 2023.

4. Y. Nabou and I. Necoara, Regularized higher-order Taylor approximation methods
for composite nonlinear least-squares, to be submitted.

• Conference papers:

1. Y. Nabou, L. Toma and I. Necoara, Modified projected Gauss-Newton method for
constrained nonlinear least-squares: application to power flow analysis, IEEE Euro-
pean Control Conference, Bucharest 2023 (DOI: 10.23919/ECC57647.2023.10178179).

1.4 Outline of the thesis

Chapter 2 provides first some preliminary linear algebra material followed by an in-depth
overview of the theoretical aspects concerning (non)smooth and (non)convex optimization, high-
lighting the main relationships that play a key role in deriving our convergence rates.
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Chapter 1. Introduction

In Chapter 3, we consider solving composite minimization problems, that involves a collection
of functions which are aggregated in a nonsmooth manner through a merit function that is con-
vex, nondecreasing, subhomogeneous and has full domain. It covers, as a particular case, smooth
approximation of minimax games, minimization of max-type functions, and simple composite
minimization problems, where the objective function has a nonsmooth component. We design
a higher-order majorization-minimization algorithmic framework for such composite problems
(possibly nonconvex). Our framework replaces each component with a higher-order surrogate
such that the corresponding error function has a higher-order Lipschitz continuous derivative.
We present convergence guarantees for our method for composite optimization problems with
(non)convex and (non)smooth objective function. In particular, we prove stationary point con-
vergence guarantees for general nonconvex (possibly nonsmooth) problems and under Kurdyka-
Lojasiewicz (KL) property of the objective function we derive improved rates depending on the
KL parameter. For convex (possibly nonsmooth) problems we also provide sublinear rates.

In Chapter 4, we change the settings of our problem, the goal being to minimize simple com-
posite problems subject to nonlinear inequality constraints. We present a higher-order method
for solving simple composite (non)convex minimization problems with smooth (non)convex func-
tional constraints. At each iteration our method approximates the smooth part of the objective
function and of the constraints by higher-order Taylor approximations, leading to a moving Tay-
lor approximation method (MTA). We present convergence guarantees for MTA algorithm for
both, nonconvex and convex problems. In particular, when the objective and the constraints are
nonconvex functions, we prove that the sequence generated by MTA algorithm converges glob-
ally to a KKT point. Moreover, we derive convergence rates in the iterates when the problem’s
data satisfy the KL property. Further, when the objective function is (uniformly) convex and
the constraints are also convex, we provide linear/superlinear/sublinear convergence rates for
our algorithm, depending on the uniform convexity constant, respectively. Finally, we present
an efficient implementation of the proposed algorithm and compare it with existing methods
from the literature.

Chapter 5 develops a regularized higher-order Taylor based method for solving composite mini-
mization problems with the merit function being convex and Lipschitz continuous (e.g., 2-norm).
At each iteration, we replace each smooth component of the objective function by a higher-order
Taylor approximation with an appropriate regularization, leading to a regularized higher-order
Taylor approximation (RHOTA) algorithm. We derive global convergence guarantees for the
RHOTA algorithm. In particular, we prove stationary point convergence guarantees for general
composite problems, and leveraging the Kurdyka-Lojasiewicz (KL) property of the objective
function, we derive improved rates depending on the KL parameter. When the Taylor approxi-
mation is of order 2, we present an efficient implementation of RHOTA algorithm, demonstrating
that the resulting nonconvex subproblem can be effectively solved utilizing standard convex pro-
gramming tools. Furthermore, we extend the scope of our investigation to include the behavior
and efficacy of RHOTA algorithm in handling systems of nonlinear equations and optimization
problems with nonlinear equality constraints and derive convergence rates specific for each class
of problems.

In Chapter 6, we introduce the concept of inexact first-order oracle of degree q for nonconvex
and nonsmooth functions, which naturally appears in the context of approximate gradient, weak
level of smoothness and other situations. Our definition is less conservative than those found
in the existing literature, and it can be viewed as an interpolation between fully exact and
the existing inexact first-order oracle definitions. We analyze the convergence behavior of a
(fast) inexact proximal gradient method using such an oracle for solving (non)convex composite
minimization problems. We derive complexity estimates and study the dependence between the
accuracy of the oracle and the desired accuracy of the gradient or of the objective function. Our
results show that better rates can be obtained both theoretically and in numerical simulations
when q is large.
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In Chapter 7, we explore a diverse range of applications to demonstrate the effectiveness and
efficiency of the optimization algorithms developed in the previous chapters. Our first case
study involves power systems, showcasing how our algorithms can be used to solve the power
flow analysis problem. Next, we turn to phase retrieval, a crucial problem in fields like optics
and signal processing, where our algorithms excel at reconstructing signals with minimal error
and computational overhead. Finally, in the realm of control systems, we illustrate how our
numerical algorithms can be applied for solving the output feedback control problem, which is
known to be a numerically challenging problem in control theory. These applications underscore
the practical impact of our optimization techniques across multiple domains.

Finally, in Chapter 8, we present some conclusions and outline some potential new research
directions.
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2 Notations and preliminaries

This chapter provides the fundamental definitions and essential mathematical tools needed for
developing the results presented in this thesis. In Section 2.1, we introduce some basic notations
from linear algebra. Section 2.2 contains definitions and results from mathematical analysis that
are vital for the optimization theory explored in this thesis. In Section 2.3, we address the basic
definitions and results related to the generalization of derivatives. Finally, Section 2.4 presents
the fundamental definitions and results relevant to nonlinear programming problems.

2.1 Fundamental components of linear algebra

We use the following notions:

• R - the set of real numbers and R̄ = R ∪ {∞}

• C - the set of complex numbers

• xT - the transpose of a vector x ∈ Rn

• xH - the Hermitian transpose of a vector x ∈ Cn, i.e., xH = x̄T .

• In - n× n identity matrix

• ‖A‖F =
√
tr(AAT ) =

√∑n
i=1

∑m
j=1 |aij |

2 - the Frobenius norm of A ∈ Rn×m, where aij
is the (i, j) entry of matrix A.

We denote a finite-dimensional real vector space with E and E∗ its dual space composed of linear
functions on E. For any linear function s ∈ E, the value of s at a point x is denoted by 〈s, x〉.
Using a self-adjoint positive-definite operator B : E→ E∗ (notation B = B∗ � 0), we can endow
these spaces with the following conjugate Euclidean norms:

‖x‖ = 〈Bx, x〉1/2 ∀x ∈ E, ‖s‖∗ =
〈
s,B−1s

〉1/2 ∀s ∈ E∗.

In the case when E = Rn and B = In we recover the usual scalar product and the Euclidean
norm, i.e., 〈x, y〉 = xT y and ‖x‖ =

√
〈x, x〉 for all x, y ∈ Rn. A well-known inequality that

follows from the previous definition is the Cauchy-Schwarz:

|〈s, x〉| ≤ ‖s‖∗‖x‖ ∀s ∈ E∗, x ∈ E.

2.2 Some tools for optimization

Consider a feasible set X ⊆ E and an objective function f : E→ R̄. The goal is to find a point
within X where the function f reaches its minimum value. Mathematically, this optimization
problem can be formulated as follows:

min
x∈X

f(x). (2.1)

10



Chapter 2. Notations and preliminaries

For this optimization problem, we have:

• The problem dimension is defined by the dimension of E, and denoted by dim(E).

• The domain of f is defined by dom f := {x ∈ E : f(x) <∞}.

• The function f is proper if ∀x ∈ dom f , we have f(x) > −∞.

• The function f is lower semicontinuous at x0 ∈ dom f if

lim inf
x→x0

f(x) ≥ f(x0).

• The epigraph of a function f is defined as

epif := {(x, α) ∈ Rn × R : f(x) ≤ α}.

• A feasible point is any point that belongs to X.

• A global optimal solution is a feasible point x∗ ∈ X such that:

f(x∗) ≤ f(x) ∀x ∈ X.

• A local optimal solution is a feasible point x∗ for which there exists r > 0 satisfying:

f(x∗) ≤ f(x), ∀x ∈ B(x∗, r) ∩X, where B(x∗, r) = {x ∈ E : ‖x− x∗‖ ≤ r}.

• The level set of f at a given x0 is denoted by:

Lf (x0) = {x ∈ E : f(x) ≤ f(x0)}.

• The indicator function of a set X ⊆ E is defined as:

1X(x) :=

{
0, if x ∈ X
∞, if x /∈ X.

• The proximal mapping of a proper convex function f is defined by

proxγf (x) := argmin
y

f(y) +
1

2γ
‖y − x‖2, γ > 0.

• The projection of a point x onto a given closed convex set X is defined as:

projX(x) := argmin
y∈X

‖x− y‖2.

In this thesis, our primary focus lies within the realm of optimization problems as delineated
in equation (2.1), where the function f is characterized by both nonsmooth and nonconvex
properties, more precisely, f takes the following nonsmooth composite form f(·) = g(F (·))+h(·),
for appropriate functions F and h. Prior to delving into a more exhaustive exposition, it is
imperative to revisit some fundamental concepts pertinent to (non)convex and (non)smooth
optimization.
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Definition 2.2.1 (Definition 2.1.1 in [38]). A set X ⊆ E is called convex if for any x, y ∈ X
and α ∈ [0, 1] we have

αx+ (1− α)y ∈ X.

This convexity notion can be extended to functions. For example, f is convex if dom f is
nonempty, convex and additionally:

f (αx+ (1− α)y) ≤ αf(x) + (1− α)f(x) ∀x, y ∈ dom f and α ∈ [0, 1] .

Several equivalent characterisations of convex functions can be given. Below we provide such
characterizations.

Proposition 2.2.2. (Theorem 3.1.2 in [38]) A proper lower semicontinuous function f : E→ R̄
is convex on the convex set domf if and only if its epigraph is a convex set.

Figure 2.1 shows an example of a convex and a nonconvex function using its epigraph.

Figure 2.1: left - convex function; right - nonconvex function.

The notion of Fréchet derivative is defined as follows:

Definition 2.2.3. ([39]) Let f : E → R̄ be a proper function with an open domain dom f .
Then, f is differentiable at x ∈ dom f if there exist a vector ∇f(x) called (Fréchet) derivative
or gradient of f at x, such that:

lim
y→0,y≠0

|f(x+ y)− f(x)− 〈∇f(x), y〉|
‖y‖

= 0.

Similarly, one can define the Hessian (second derivative). For a twice differentiable function
f : E→ R̄ on a convex and open domain dom f ⊆ E, we denote by∇f(x) its gradient and∇2f(x)
its Hessian at the point x ∈ dom f . When f is differentiable on its domain, the convexity is also
equivalent to the fact that all its linear approximations (i.e. its first-order Taylor expansions)
are below the graph of f .

Proposition 2.2.4. (Definition 2.1.2 in [38]) Let f : E → R̄ such that domf is convex and f
is differentiable, i.e., the gradient ∇f exists at each point in domf . Then, f is convex if and
only if for all x, y ∈ domf , we have:

f(y) ≥ f(x) + 〈∇f(x), y − x〉.
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Proposition 2.2.5. (Theorem 2.1.4 in [38]) Let f : E→ R̄ such that domf is convex and f is
twice differentiable, i.e., the Hessian ∇2f exists at each point in domf . Then, f is convex if
and only if, for all x ∈ domf , we have:

∇2f(x) � 0.

We have ∇f(x) ∈ E∗ and ∇2f(x)d ∈ E∗ for all d ∈ E. In what follows, we often work with
directional derivatives of a function f at x along directions di ∈ E of order p:

Dpf(x) [d1, . . . , dp] .

For example, for a twice differentiable function f one has for any x ∈ dom f and d, d̄ ∈ E that

Df(x)[d] = 〈∇f(x), d〉 and D2f(x)[d, d̄] = 〈∇2f(x)d, d̄〉.

Note that Dpf(x)[·] is a symmetric p multilinear form on E. The notation Dpf(x)[d]p is used
when all directions are the same, i.e., d1 = · · · = dp = d for some d ∈ E. The norm of Dpf(x) is
defined in the standard way (see [12]):

‖Dpf(x)‖ := max
∥d1∥,··· ,∥dp∥≤1

|Dpf(x) [d1, . . . , dp]| = max
∥d∥≤1

|Dpf(x) [d]p| .

Note that for any fixed x, y ∈ dom f the form Dpf(x) [·] − Dpf(y)[·] is also p multilinear and
symmetric. Then, we define the following class of smooth functions:

Definition 2.2.6. Let f : E → R be p ≥ 1 times continuously differentiable. Then, the p
derivative of f is Lipschitz continuous if there exists Lf

p > 0 for which the following holds:

‖Dpf(x)−Dpf(y)‖ ≤ Lf
p‖x− y‖ ∀x, y ∈ dom f. (2.2)

Next, we present several examples of functions satisfying this definition.

Example 2.2.7. Given x0 ∈ Rn and a positive definite matrix B, which defines the norm
‖x‖ = 〈Bx, x〉1/2 for all x ∈ En, the function f(x) = ‖x − x0‖p+1 with p ≥ 1 satisfies the
Lipschitz continuity condition in equation (2.2) with a Lipschitz constant Lf

p = (p+ 1)!.

Proof. This result is stated in Theorem 7.1 of [40]. For the reader’s convenience, we also include
the proof. Note that the following is a polynomial expression for the qth derivative of f :

∇qfp+1(x)[d]
q = ‖x− x0‖p+1−qgq,p+1(τd(x)), (2.3)

where d ∈ E is an arbitrary unit vector,

τd(x) :=

{
⟨B(x−x0),d)

∥x−x0∥ , if x 6= x0

0, if x = x0,

and the polynomial gq,p+1 is a combination of the previous polynomial gq−1,p+1 and its derivative
g
′
q−1,p+1 (when q = 0, gq,p+1(τ) is set to 1):

gq,p+1(τ) :=
(
1− τ2

)
g′q−1,p+1(τ) + (p− q + 2)τgq−1,p+1(τ) ∀q ≥ 1.

For (2.2) to hold it is sufficient to show that:∣∣∇p+1fp+1(x)[d]
p+1
∣∣ ≤ (p+ 1)! ∀x, d ∈ E.
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Considering (2.3), we have:

∇p+1fp+1(x)[d]
p+1 = gp+1,p+1(τd(x)).

From Cauchy-Schwartz inequality we obtain that |τd(x)| ≤ 1 and therefore:∣∣∇p+1fp+1(x)[d]
p+1
∣∣ = |gp+1,p+1(τd(x))| ≤ max

τ∈[−1,1]
|gp+1,p+1(τ)| .

However, by induction we can easily prove that (see also Proposition 4.5 in [40]):

max
[−1,1]

|gp+1,p+1| =
p∏

i=0

(p+ 1− i) = (p+ 1)!,

which concludes the statement of Example 2.2.7. ■

Example 2.2.8. For given (ai)
m
i=1 ∈ E∗, consider the log-sum-exp function:

f(x) = log
(

m∑
i=1

e⟨ai,x⟩

)
∀x ∈ E.

Note that for m = 2 and a1 = 0, we recover the logistic regression function, widely used in
machine learning [3]. For B :=

∑m
i=1 aia

∗
i (assuming B � 0, otherwise we can reduce dimension-

ality of the problem) we define the norm ‖x‖ = 〈Bx, x〉1/2 for all x ∈ E and then the Lipschitz
continuous condition (2.2) holds for p = 1, 2 and 3 with Lf

1 = 1, Lf
2 = 2 and Lf

3 = 4, respectively.

Proof. This example has been analyzed in [41]. For completeness, we also provide the proof.
Let us denote for simplicity κ(x) =

∑m
i=1 e

⟨ai,x⟩. Then, for all x ∈ E and d ∈ E, we have:

〈∇f(x), d〉 = 1

κ(x)

m∑
i=1

e⟨ai,x⟩ 〈ai, d〉 ,

〈
∇2f(x)d, d

〉
=

1

κ(x)

m∑
i=1

e⟨ai,x⟩ (〈ai, d〉 − 〈∇f(x), d〉)2 ≤
m∑
i=1

〈ai, d〉2 = ‖d‖2.

Taking maximum over ‖d‖ = 1 in the previous expression we get that ‖∇2f(x)‖ ≤ 1, hence
Lf
1 = 1. Similarly, for p = 2 we have:

∇3f(x)[d]3 =
1

κ(x)

m∑
i=1

e⟨ai,x⟩ (〈ai, d〉 − 〈∇f(x), d〉)3

≤
〈
∇2f(x)d, d

〉
max

1≤i,j≤m
〈ai − aj , d〉 ≤ 2‖d‖3.

Taking again maximum over ‖d‖ = 1 in the previous expression we obtain that ‖∇3f(x)‖ ≤ 2,
hence Lf

2 = 2. Finally, for p = 3 we have:

∇4f(x)[d]4 =
1

κ(x)

m∑
i=1

e⟨ai,x⟩ (〈ai, d〉 − 〈∇f(x), d〉)4 − 3
〈
∇2f(x)d, d

〉2
≤ ∇3f(x)[d]3 max

1≤i,j≤m
〈ai − aj , d〉 ≤ 4‖d‖4.

Proceeding as before, i.e., taking maximum over ‖d‖ = 1 in the previous expression, we get that
‖∇4f(x)‖ ≤ 4, hence Lf

3 = 4. These prove the statements of Example 2.2.8. ■

14



Chapter 2. Notations and preliminaries

Example 2.2.9. If the p+1 derivative of a function f is bounded, then the p derivative of f is
Lipschitz continuous. Moreover, any polynomial of degree p (e.g., the p Taylor approximation
of f , denoted T f

p ), has the p derivative Lipschitz with the Lipschitz constant zero.

Proof. Indeed, since ∇pT f
p (y;x) = ∇pf(x) (i.e., the p derivative is constant for all y), we have:

‖∇pT f
p (y;x)−∇pT f

p (z;x)‖ = ‖∇pf(x)−∇pf(x)‖ = 0 ≤ LT f
p

p ‖y − z‖ ∀y, z.

for any L
T f
p

p ≥ 0. Moreover, the p Taylor approximation of f has also the p − 1 derivative
Lipschitz with constant LT f

p

p−1 = ‖∇pf(x)‖. These prove the statements of Example 3.1.1. ■

We denote the Taylor approximation of f at x ∈ dom f of order p by:

T f
p (y;x) = f(x) +

p∑
i=1

1

i!
Dif(x)[y − x]i ∀y ∈ E.

It is established that when (2.2) is satisfied, employing standard integration techniques allows
for bounding the residual between the function value and its Taylor approximation [12]:

Lemma 2.2.10. If the function f : E→ R is p times differentiable with the p derivative is Lf
p ,

then we have:

|f(y)− T f
p (y;x)| ≤

Lf
p

(p+ 1)!
‖y − x‖p+1 ∀x, y ∈ domf. (2.4)

Proof. Indeed, let us prove this relation for p = 1 and p = 2. For p = 1, employing the mean
value theorem in its integral form, we obtain:

f(y)− T f
1 (y;x) = f(y)− f(x)− 〈∇f(x), y − x〉

=

∫ 1

0
〈∇f (x+ t(y − x)) , y − x〉 dt− 〈∇f(x), y − x〉

=

∫ 1

0
〈∇f (x+ t(y − x))−∇f(x), y − x〉 dt.

Further, taking absolute value we obtain:

|f(y)− T f
1 (y;x)| =

∣∣∣∣∫ 1

0
〈∇f (x+ t(y − x))−∇f(x), y − x〉 dt

∣∣∣∣
≤
∫ 1

0
|〈∇f (x+ t(y − x))−∇f(x), y − x〉 | dt

≤
∫ 1

0
‖∇f(x+ t(y − x))−∇f(x)‖∗‖y − x‖dt ≤

∫ 1

0
Lf
1 t‖y − x‖

2dt =
Lf
1

2
‖y − x‖2,

where the last inequality is a consequence of the Lipschitz continuity of the gradient of f . Next,
let’s demonstrate that the relation in (2.4) holds for p = 2. Indeed:

f(y)− T f
2 (y;x) = f(y)− f(x)− 〈∇f(x), y − x〉 − 1

2
〈∇2f(x)[y − x], y − x〉

=

∫ 1

0
〈∇f (x+ t(y − x))−∇f(x), y − x〉 dt− 1

2
〈∇2f(x)[y − x], y − x〉

=

∫ 1

0

∫ 1

0
〈∇2f (x+ ts(y − x)) t[y − x], y − x〉 ds dt− 1

2
〈∇2f(x)[y − x], y − x〉
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=

∫ 1

0
t

∫ 1

0
〈∇2f (x+ ts(y − x)) [y − x]−∇2f(x)[y − x], y − x〉 ds dt,

where we have utilized the mean value theorem in its integral form twice. Similarly, taking the
absolute value on both sides, we get:

|f(y)− T f
2 (y;x)| =

∣∣∣∣f(y)− f(x)− 〈∇f(x), y − x〉 − 1

2
〈∇2f(x)[y − x], y − x〉

∣∣∣∣
≤
∫ 1

0
t

∫ 1

0

∣∣〈∇2f (x+ ts(y − x)) [y − x]−∇2f(x)[y − x], y − x〉
∣∣ ds dt

=

∫ 1

0
t

∫ 1

0

∣∣D2f (x+ ts(y − x)) [y − x]2 −D2f(x)[y − x]2
∣∣ ds dt

=

∫ 1

0
t‖y − x‖2

∫ 1

0

∣∣∣∣D2f (x+ ts(y − x)) [y − x]2

‖y − x‖2
−D2f(x)

[y − x]2

‖y − x‖2

∣∣∣∣ ds dt
≤
∫ 1

0
t‖y − x‖2

∫ 1

0

∥∥D2f (x+ ts(y − x))−D2f(x)
∥∥ ds dt.

Using the fact that f has the second derivative Lipschitz, we get:∣∣∣f(y)− T f
2 (y;x)

∣∣∣ = ∫ 1

0
t‖y − x‖2

∫ 1

0
L2ts ‖y − x‖ ds dt

≤ L2‖y − x‖3
∫ 1

0
t2dt

∫ 1

0
s ds = L2

6
‖y − x‖3.

Following the same strategy, we can derive (2.4) for any p ≥ 1. ■

By employing analogous reasoning for the functions 〈∇f(x), h〉 and 〈∇2f(x)h, h〉, with a fixed
direction h ∈ E, we arrive at the following inequalities, applicable to all x, y ∈ dom f and p ≥ 2,
as detailed in [12]:

‖∇f(y)−∇T f
p (y;x)‖∗ ≤

Lf
p

p!
‖y − x‖p, (2.5)

‖∇2f(y)−∇2T f
p (y;x)‖ ≤

Lf
p

(p− 1)!
‖y − x‖p−1. (2.6)

For the Hessian, the norm defined in (2.6) corresponds to the spectral norm of the self-adjoint
linear operator (i.e., maximal module of all eigenvalues computed with respect to operator B.
In the context of convexity, Nesterov [12] established a significant result demonstrating that
a properly regularized Taylor approximation of a convex function yields a convex multivariate
polynomial.

Lemma 2.2.11 ( Theorem 1 in [12]). Suppose f is a convex function with a p-th derivative that
is Lipschitz with constant Lf

p , where p ≥ 2. Let T f
p (y;x) represent the Taylor approximation of

f of order p around x. If Mp ≥ pLf
p , then the function:

s(y;x) = T f
p (y;x) +

Mp

(p+ 1)!
‖y − x‖p+1

is convex in y.

Proof. For the reader’s convenience, we include the proof, adapted from [12]. Note that

∇2

(
1

p
‖x‖p

)
= (p− 2)‖x‖p−4Bxx∗B + ‖x‖p−2B ≽ ‖x‖p−2B. (2.7)
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For an arbitrary x and y from dom f , and for any direction d ∈ E, the following holds:

〈(∇2f(y)−∇2T f
p (y;x))[d], d〉 ≤ ‖∇2f(y)−∇2T f

p (y;x)‖‖d‖2
(2.6)
≤ Lf

p

(p− 1)!
‖y − x‖p−1‖d‖2.

This implies that:

∇2f(y)−∇2T f
p (y;x) ≼

Lf
p

(p− 1)!
‖y − x‖p−1 ·B. (2.8)

Additionally, based on the convexity of f , we can infer:

0 ≼ ∇2f(y)
(2.8)
≼ ∇2T f

p (y;x) +
Lf
p

(p− 1)!
‖y − x‖p−1B

(2.7)
≼ ∇2T f

p (y;x) +
pLf

p

(p+ 1)!
∇2(‖y − x‖p+1)

≼ ∇2T f
p (y;x) +

Mp

(p+ 1)!
∇2(‖y − x‖p+1) = ∇2s(y;x).

Thus, s(y;x) is a convex function in the first component y. ■

Definition 2.2.12. A function g : Rm → R is said to be nondecreasing if for all i = 1 : m, g is
nondecreasing in its ith argument, i.e., the univariate function:

x 7→ g(x1, · · · , xi−1, x, xi+1, · · · , xm),

in nondecreasing. We say that g is homogeneous if:

g(αx) ≤ αg(x) ∀x ∈ Rm ∀α ≥ 1. (2.9)

In what follows, if x and y are in Rm, then x ≥ y means that xi ≥ yi for all i = 1 : m. Similarly,
we define x > y. Since g is nondecreasing, then for all x, y ∈ Rm such that x ≤ y we have
g(x) ≤ g(y).

Next, we recall the following classical weighted arithmetic-geometric mean inequality: if a, b are
positive constants and 0 ≤ α1, α2 ≤ 1, such that α1 + α2 = 1, then aα1bα2 ≤ α1a + α2b. For

ρ > 0, a = ρ‖x− y‖2, b = δ
2

2−q
q

ρ
q

2−q
, α1 =

q
2 and α2 =

2−q
2 we have:

δq‖x− y‖q ≤
qρ‖x− y‖2

2
+

(2− q)δ
2

2−q
q

2ρ
q

2−q

. (2.10)

2.3 Generalization of the derivative

A key notion in variational analysis is that of subdifferential, which extends the one of derivative
for functions which are not differentiable. Hence, let us recall some definitions concerning
subdifferential calculus.

Definition 2.3.1. (Definition 3.1.5 in [38]) Let f : E → R̄ be a proper lower semicontinuous
convex function. Then, a vector gx ∈ E∗ is called a subgradient of f at the point x ∈ dom f if
for any y ∈ dom f one has:

f(y) ≥ f(x) + 〈gx, y − x〉.
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The set of all subgradients of f at x is denoted by ∂f(x).

Example 2.3.2. Consider the univariate convex function f(x) = |x|. Then, we have: ∂f(0) =
[−1, 1]. Refer to Figure 2.2 for an illustration of this example.

Figure 2.2: left - the absolute value function; right - its subdifferential ∂f(x) as a function of x.

Below, we present the extension of the notion of subgradient for nonconvex functions.

Definition 2.3.3. (Definition 8.3 in [39]) Let f : E → R̄ be a proper lower semicontinuous
function. For a given x ∈ dom f , the regular subdifferential of f at x, written ∂̂f(x), is the set
of all vectors gx ∈ E∗ satisfying:

lim
x ̸=y

inf
y→x

f(y)− f(x)− 〈gx, y − x〉
‖x− y‖

≥ 0.

When x /∈ dom f , we set ∂̂f(x) = ∅. The limiting subdifferential, or simply the subdifferential,
of f at x ∈ dom f , written ∂f(x), is defined as:

∂f(x) :=
{
gx ∈ E∗ : ∃xk → x, f(xk)→ f(x) and ∃gkx ∈ ∂̂f(xk) such that gkx → gx

}
.

The horizon subdifferential of f at x ∈ dom f , written ∂∞f(x), is defined as:

∂∞f(x) :=
{
gx ∈ E∗ : ∃xk → x, f(xk)→ f(x) and ∃gkx ∈ ∂̂f(xk) s.t.: λkgkx → gx, λ

k ↘ 0
}
.

Example 2.3.4. (Example 4.7.(ii) in [42]) Let f : R→ R̄ defined by f(x) = log(1+ |x|). Then,
we have ∂∞f(x) = {0} for all x. Additionally, we have:

∂f(x) = ∂̂f(x) =



{
1

1 + x

}
, if x > 0,{

−1
1− x

}
, if x < 0,

[−1, 1], if x = 0,

Example 2.3.5. (Page 304 in [39]) Let f be defined by:

f(x) =

x
2 sin

(
1

x

)
, if x 6= 0,

0, if x = 0.

Then, we have:

∂̂f(0) = ∂∞f(0) = {0}, ∂f(0) = [−1, 1].
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Note that ∂̂f(x) ⊆ ∂f(x), both sets ∂̂f(x) and ∂f(x) are closed, and additionally, ∂̂f(x) is con-
vex. If f is differentiable at x, then ∂̂f(x) = {∇f(x)} ⊆ ∂f(x). However, if f is continuously
differentiable on a neighborhood of x, then we have equality, i.e., ∂f(x) = {∇f(x)}. Note also
that when f is proper lower semicontinuous and convex function, then the regular subdifferen-
tial, the limiting subdifferential and the set of the subgradients of f at any point x ∈ dom f
coincides [39, 43].

2.3.1 Normal cones

Let set C ⊆ E. The regular normal cone to C at x̄ ∈ C is defined by [39, 43]:

N̂C(x̄) :=

w ∈ E∗ : lim sup
x−→

C
x̄

〈w, x− x̄〉
‖x− x̄‖

≤ 0

 ,

where the symbol x −→
C
x̄ indicates that x→ x̄ with x ∈ C. The limiting normal cone to C at x̄

is defined as [39, 43]:

NC(x̄) =

{
w ∈ E∗ : ∃ x̄k −→

C
x̄, wk → w as k →∞ with wk ∈ N̂C(xk)

}
.

Figure 2.3 below provides examples that illustrate when normal cones coincide with regular
normal cones and when they do not.

Figure 2.3: left - normal and regular normal cone coincide; right - normal and regular normal
cone different (figure taken from [42]). In the left figure and at points x1 and x2, the
regular and limiting normal cones are both represented by the space highlighted in
red. At point x3, both the regular and limiting normal cones are equal to the half-
line indicated by the red vector. However, in the right figure, the regular normal
cone is a singleton (i.e., set containing only 0), while the limiting normal cone is the
line along the red vector.

When C is a nonempty closed convex set, the regular and the normal cones coincide [39, 43]
(see Theorem 6.9 in [39]).

2.3.2 Subdifferential and normal cones

Subdifferential has a direct connection to the normal cone due to the variational geometry of
epigraphs. For any x ∈ dom f , the subdifferential and the horizon subdifferential of lsc function
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f at x can be defined via the limiting normal cone [39, 43] (see Theorem 8.9 in [39] as well as
Definition 1.78 in [43]):

∂̂f(x) =
{
gx ∈ E∗ : (gx,−1) ∈ N̂epif (x, f(x))

}
, (2.11)

∂f(x) = {gx ∈ E∗ : (gx,−1) ∈ Nepif (x, f(x))} , (2.12)

∂∞f(x) = {gx ∈ E∗ : (gx, 0) ∈ Nepif (x, f(x))} . (2.13)

Obviously, ∂∞f(x) is a cone. Below in Figure 2.4, we present an example showcasing the relation
between the subdifferential and normal cone.

Figure 2.4: Relation between subdifferentials and normal cones (figure taken from [42]) which
can be understood as follows: at the point x1, the epigraph of the function f curves
outward, resulting in the coincidence of the normal cone and the regular normal
cone. Consequently, the regular subdifferential and the limiting subdifferential are
also equivalent. As the function f is continuously differentiable at x2, both the
regular subdifferential and the limiting subdifferential are singleton sets, indicating
that they contain only one element. At point x3, the regular normal cone is trivial,
containing only the zero vector. As a result, the regular subdifferential is also trivial,
with an empty set. The general normal cone at point x3 contains vectors originating
from two distinct directions. The limiting subdifferential consists of precisely two
vectors. This divergence between the regular and limiting subdifferentials at this
point emphasizes the significance of the concept of normal cones in understanding
the geometry of functions and their epigraphs.

Since this thesis focuses on composite problems, it’s necessary to review certain chain rules for
the composite functions of the form g(F (·)), where g and F can be nonsmooth. Let’s first discuss
a few definitions related to regularity:

Definition 2.3.6. (Definition 8 in [44]) We say that f is regular at x0 if for every d in E the
usual one-sided directional derivative:

f
′
(x0; d) := lim

λ→0+

f(x0 + λd)− f(x0)
λ

,

exists and it is equal to:

f∗(x0; d) := lim sup
x→x0,λ→0+

f(x+ λd)− f(x)
λ

.
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Then, we have the following chain rule:

Theorem 2.3.7. (Theorem 6 in [44]) For the composite function g(F ), where F = (F1, · · · , Fm)
and g are locally Lipschitz, Fi’s are regular at x, g is regular at F (x) and ∂g(F (x)) ⊆ Rm

+ . Then,
we have the following rule:

∂(g ◦ F )(x) = co

{
m∑
i=1

uivi | u ∈ ∂g
(
F (x)

)
, vi ∈ ∂Fi(x), i = 1 : m

}
. (2.14)

As a consequence, if g is the identity function and m = 2, then:

∂(F1 + F2)(x) = ∂F1(x) + ∂F2(x).

Finally, if F is continuously differentiable at x ∈ domF , then [39][Proposition 8.12]:

∂(F + f)(x) = ∇F (x) + ∂f(x).

For any x ∈ dom f let us define:

Sf (x) = dist
(
0, ∂f(x)

)
:= inf

gx∈∂f(x)
‖gx‖.

If ∂f(x) = ∅, we set Sf (x) = ∞. Further, if F is convex function and g is convex increasing,
then g(F ) is a convex function. Indeed, let x, y ∈ dom g(F ) and α ∈ [0, 1], then we get:

g(F (αx+ (1− α)y)) ≤ g(αF (x) + (1− α)F (y)) ≤ αg(F (x)) + (1− α)g(F (y)),

where the first inequality follows by combining the convexity of F and that g is increasing, and
the last inequality follows from convexity of g.

In certain situations, the assumption that f is convex is inadequate, necessitating the consider-
ation of a more robust concept. Thus, let’s introduce the concept of uniformly convex functions
[19, 10], which will be central to the local convergence analysis of the algorithms discussed in
this thesis, specifically in the context of convex optimization:

Definition 2.3.8. A function f : E → R̄ is uniformly convex of degree θ ≥ 2 if there exists a
positive constant σθ > 0 such that:

f(y) ≥ f(x) + 〈gx, y − x〉+
σθ
θ
‖x− y‖θ ∀x, y ∈ dom f, and gx ∈ ∂f(x). (2.15)

It’s important to note that when θ = 2 in equation (2.15), it aligns with the standard definition
of a strongly convex function. A significant example of uniformly convex functions is presented
below (refer to [19] for further details).

Example 2.3.9. For θ ≥ 2, consider the function f(x) = 1
θ‖x− x̄‖

θ, where x̄ is a given point.
Under these conditions, f is uniformly convex of degree θ, with a convexity parameter σθ = 22−θ.

2.3.3 Introduction to the Kurdyka-Łojasiewicz property

For nonconvex functions, there’s a more encompassing concept than uniform convexity, referred
to as the Kurdyka-Łojasiewicz (KL) property. This property accounts for various types of local
geometries that nonconvex functions might display [45]. To explore this concept, let’s start by
revisiting the definition of semi-algebraic functions.
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Definition 2.3.10. (Definition 5.1 in [46]) A set X ⊆ Rn is called semi-algebraic if there exists
a finite number of real polynomial functions pi,j , qi,j : Rn → R such that:

X =

m⋃
i=1

n⋂
j=1

{x : pi,j(x) = 0 and qi,j(x) ≤ 0} .

A function f : Rn → R̄ is called semi-algebraic if its graph:

{(x, α) ∈ Rn × R : f(x) = α},

is a semi-algebraic set.

Definition 2.3.11. A proper lower semicontinuous function f : E → R̄ satisfies Kurdyka-
Lojasiewicz (KL) property on the compact set Ω ⊆ dom f on which f takes a constant value f∗
if there exist δ, ϵ > 0 such that one has:

κ′(f(x)− f∗) · Sf (x) ≥ 1 ∀x : dist(x,Ω) ≤ δ, f∗ < f(x) < f∗ + ϵ,

where κ : [0, ϵ]→ R is concave differentiable function satisfying κ(0) = 0 and κ′ > 0.

The KL property holds for a large class of functions including semi-algebraic functions (e.g.,
real polynomial functions), vector or matrix (semi)norms (e.g., ‖ · ‖p with p ≥ 0 rational num-
ber), logarithm functions, exponential functions, and uniformly convex functions, see [45] for a
comprehensive list. In particular, the max (sup) of semi-algebraic functions is a semi-algebraic
function, see [46] (Example 2). For example, if f is semi-algebraic function, then we have
κ(t) = σ

1
q
q

q
q−1 t

q−1
q , with q > 1 and σq > 0 [47]. Then, the KL property establishes the following

local geometry of the nonconvex function f around a compact set Ω:

f(x)− f∗ ≤ σqSf (x)q ∀x : dist(x,Ω) ≤ δ, f∗ < f(x) < f∗ + ϵ. (2.16)

Example 2.3.12. (Example 4.15 in [48]) The functions f(x) = − ln(1 − ‖x‖p) and f(x) =

tan(‖x‖p) satisfies the KL property with κ(t) = pt
1
p .

Note that the relevant aspect of the KL property is when Ω is a subset of stationary points for
f , i.e. Ω ⊆ {x : 0 ∈ ∂f(x)}, since it is easy to establish the KL property when Ω is not related
to stationary points.

2.4 Nonlinear programming problems

Nonlinear programming (NLP) involves the process of solving optimization problems where the
objective function or the constraints, or both, are nonlinear. It encompasses a wide range of
problems in mathematics, engineering, economics, and other fields, where linear models do not
suffice to capture the complexity of real-world scenarios. A general nonlinear programming
problem takes the following form [49]:

min
x

f(x) (2.17)

s.t.: Fi(x) ≤ 0, i = 1 : m, Gi(x) = 0, i = 1 : p,

where f(x) is the objective function, Fi(x), with i = 1 : m, represents the inequality constraints,
and Gj(x), with j = 1 : p, represents the equality constraints and all the functions are assumed
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differentiable. Depending on the context, the goal is to find a point x∗ that minimizes f(x)
while satisfying all constraints.

2.4.1 KKT Conditions

The Karush-Kuhn-Tucker (KKT) conditions provide necessary conditions for a solution to be
optimal in constrained optimization problems. For convex problems, they are also sufficient.
The KKT conditions involve both the primal variables (the optimization variable x) and dual
variables (Lagrange multipliers). Given the optimization problem with inequality and equality
constraints (2.17), the KKT conditions consist of the following:

• Stationarity condition

∇f(x∗) +
m∑
i=1

λ∗i∇Fi(x
∗) +

p∑
j=1

µ∗j∇Gj(x
∗) = 0,

where λ∗i are the Lagrange multipliers for the inequality constraints, and µ∗j are for the
equality constraints.

• Primal Feasibility:

Fi(x
∗) ≤ 0, Gj(x

∗) = 0 ∀i = 1 : m, j = 1 : p.

• Dual Feasibility:
λ∗i ≥ 0 ∀i = 1 : m.

• Complementary Slackness:

λ∗i ·Gi(x
∗) = 0 ∀i = 1 : m.

If there exist the multipliers λ∗ and µ∗ bounded such that these conditions hold, then x∗ is a
Karush-Kuhn-Tucker (KKT) point for problem (2.17).

2.4.2 Constraint qualifications conditions

Constraint qualifications are conditions that ensure the validity of the KKT conditions in non-
linear programming. Without certain constraint qualifications, the KKT conditions might not
hold, even if a solution seems to meet the optimality criteria. Let’s discuss the key constraint
qualifications, their role in ensuring that KKT conditions lead to correct optimality conclusions,
and how they relate to convex and nonconvex problems.

Constraint qualifications provide the conditions under which the KKT conditions become valid
necessary conditions for optimality. They help avoid pathological cases where the KKT condi-
tions might not be applicable due to complex or irregular constraint configurations.

Here are some common constraint qualifications:

• Linear Independence Constraint Qualification (LICQ): this condition states that the gra-
dients of the active constraints at a solution must be linearly independent. Formally, at a
point x∗, the set of gradients {∇Fi(x

∗) | i = 1 : m s.t. Fi(x
∗) = 0}∪{∇Gj(x

∗) | j = 1 : p}
should be linearly independent.
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• Mangasarian-Fromovitz Constraint Qualification (MFCQ): requires that the gradients of
the equality constraints be linearly independent, and there exists a nonzero feasible direc-
tion d such that for all active inequality constraints their gradients ∇Fi(x∗) are negative
along that direction and additionally the gradients of all equality constraints are linearly
independent and zero along the same direction. Formally, at a point x∗, there exists d
such that ∇Fi(x

∗)Td < 0 ∀i = 1 : m s.t. Fi(x
∗) = 0, and ∇Gj(x

∗)Td = 0 ∀j = 1 : p, with
∇Gj(x

∗) ∀j = 1 : p linearly independent. Note that MFCQ is more general than LICQ
(since LICQ implies MFCQ).

• Slater’s Condition: this condition is specific to convex problems and requires that there
exists a strictly feasible point, meaning a point where all nonlinear inequality constraints
are strictly satisfied and all equality constraints hold. It ensures the existence of interior
points, aiding in the proof of convexity-related optimality results.

Constraint qualifications are critical because if they are not satisfied, then the KKT conditions
might not be valid. This could lead to situations where optimization algorithms fail or yield
incorrect results. Let us recall that a local minimum satisfying the Linear Independence Con-
straint Qualification (LICQ) or the Mangasarian-Fromovitz Constraint Qualification (MFCQ)
is also a Karush-Kuhn-Tucker (KKT) point.

Theorem 2.4.1. (Theorem 12.1 in [49]) Let x∗ be a local minimum of (2.17) and assume that
LICQ (or MFCQ) holds at x∗. Then, x∗ is a KKT point for the problem (2.17).

In convex optimization, satisfying a constraint qualification like Slater’s condition ensures that
KKT points are also global optima. Hence for convex problems, the KKT conditions become
both necessary and sufficient for optimality, provided that the Slater’s condition holds.

2.4.3 Approximate KKT conditions

Typically, theorems that underlie an optimality condition have the following structure: if a local
minimizer x∗ satisfies some certain constraint qualifications, then x∗ is a KKT point. In another
way, standard first-order necessary conditions for optimality are generally expressed as either the
presence of KKT conditions or the absence of constraint qualifications. The implementations of
most practical algorithms designed to solve large-scale nonlinear programming problems incor-
porate stopping criteria that signal when the current iterate is sufficiently close to an optimum.
In most cases, computer codes check for approximate Karush-Kuhn-Tucker (AKKT) conditions.
AKKT conditions refer to a situation where the KKT conditions are approximately satisfied.
This arises in practice when exact KKT points are hard to compute due to numerical issues,
high computational costs, or iterative methods that stop before achieving perfect accuracy. In
an AKKT point, x∗ϵ , the stationarity, primal feasibility, dual feasibility, and complementary
slackness conditions are met within some tolerance ϵ > 0. Specifically:

• Approximate Stationarity: The norm of the stationarity condition is less than ϵ:

‖∇f(x∗ϵ ) +
m∑
i=1

λ∗i∇Fi(x
∗
ϵ ) +

p∑
j=1

µ∗j∇Gj(x
∗
ϵ )‖ ≤ ϵ,

• Approximate Primal Feasibility: All inequality constraints are violated by no more than
ϵ, and all equality constraints are met within ϵ:

‖F (x∗ϵ )‖ ≤ ϵ, ‖max(G(x∗ϵ ), 0)‖ ≤ ϵ.
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• Approximate Complementary Slackness: The product of Lagrange multipliers and the
constraints is within ϵ:

‖λ∗i ·Gi(x
∗
ϵ )‖ ≤ ϵ.

Note that any local minimum of the problem (2.17) satisfies these AKKT conditions for some
ϵ > 0 without requiring any constraint qualifications conditions, see [50, 51]. Note that if a point
satisfies AKKT then either it converges to a KKT point as ϵ→ 0 or no constraint qualification
holds at that limit point [51]. Let’s illustrate this situation with an example [51]:

min
x
f(x) =

(x2 − 2)2

2
,

s.t. : F1(x) = x1 = 0,

F2(x) = x1x2 = 0,

which has a solution at (0, 2). Now, let’s consider a small ϵ and examine the point x∗ϵ = (ϵ, 1)T .
The first-order optimality condition at x∗ϵ is calculated as:∥∥∥∥∇f(x∗ϵ )− 1

ϵ
∇F1(x

∗
ϵ ) +

1

ϵ
∇F2(x

∗
ϵ )

∥∥∥∥ =

∥∥∥∥(0,−1)T − 1

ϵ
(1, 0)T +

1

ϵ
(1, ϵ)T

∥∥∥∥ = 0,

|F1(x
∗
ϵ )| = ϵ and |F2(x

∗
ϵ )| = ϵ.

Hence x∗ϵ is a AKKT point. However, the limit point of x∗ϵ is not a KKT point because the
multipliers −1

ϵ and 1
ϵ are unbounded as ϵ → 0. Moreover, no constraint qualification holds at

such limit point since ∇F1(x
∗
ϵ ) and ∇F2(x

∗
ϵ ) are linearly dependent when ϵ goes to zero.

In summary, AKKT points are valuable in practice because they offer a sense of when an
iterative optimization process yields an approximate KKT point. This allows practitioners to
make decisions based on nearly optimal solutions, while effectively managing computational
resources.

Finally, let us also recall the following lemma that will be used when analysing convergence of op-
timization algorithms developed in this thesis, whose proof is similar to the one in [52](Theorem
2). For completeness, we give the proof below.

Lemma 2.4.2. Let θ > 0, C1, C2 ≥ 0 and (λk)k≥0 be a nonnegative, nonincreasing sequence,
satisfying the following recurrence:

λk+1 ≤ C1 (λk − λk+1)
1
θ + C2 (λk − λk+1) . (2.18)

If θ ≤ 1, then there exists an integer k0 such that:

λk ≤
(

C1 + C2

1 + C1 + C2

)k−k0

λ0 ∀k ≥ k0.

If θ > 1, then there exists α > 0 and integer k0 such that:

λk ≤
α

(k − k0)
1

θ−1

∀k ≥ k0.

Proof. Note that the sequence λk is nonincreasing and nonnegative, thus it is convergent. Let us
consider first θ ≤ 1. Since λk−λk+1 converges to 0, then there exists k0 such that λk−λk+1 ≤ 1
and λk+1 ≤ (C1 + C2) (λk − λk+1) for all k ≥ k0. It follows that:

λk+1 ≤
C1 + C2

1 + C1 + C2
λk,
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which proves the first statement. If 1 < θ ≤ 2, then there exists also an integer k0 such that
λk − λk+1 ≤ 1 for all k ≥ k0. Then, we have:

λθk+1 ≤ (C1 + C2)
θ (λk − λk+1) .

Since 1 < θ ≤ 2, then taking 0 < β = θ − 1 ≤ 1, we have:(
1

C1 + C2

)θ

λ1+β
k+1 ≤ λk − λk+1,

for all k ≥ k0. From Lemma 11 in [19], we further have:

λk ≤
λk0

(1 + σ(k − k0))
1
β

for all k ≥ k0 and for some σ > 0. Finally, if θ > 2, then define h(s)=s−θ and let R > 1 be
fixed. Since 1/θ < 1, then there exists a k0 such that λk − λk+1 ≤ 1 for all k ≥ k0. Then, we
have λk+1 ≤ (C1 + C2) (λk − λk+1)

1
θ , or equivalently:

1 ≤ (C1 + C2)
θ(λk − λk+1)h(λk+1).

If we assume that h(λk+1) ≤ Rh(λk), then:

1 ≤ R(C1 + C2)
θ(λk − λk+1)h(λk) ≤

R(C1 + C2)
θ

−θ + 1

(
λ−θ+1
k − λ−θ+1

k+1

)
.

Denote µ = −R(C1+C2)θ

−θ+1 . Then:

0 < µ−1 ≤ λ1−θ
k+1 − λ

1−θ
k . (2.19)

If we assume that h(λk+1) > Rh(λk) and set γ = R− 1
θ , then it follows immediately that

λk+1 ≤ γλk. Since 1− θ is negative, we get:

λ1−θ
k+1 ≥ γ

1−θλ1−θ
k ⇐⇒ λ1−θ

k+1 − λ
1−θ
k ≥ (γ1−θ − 1)λ1−θ

k .

Since 1 − θ < 0, γ1−θ > 1 and λk has a nonnegative limit, then there exists µ̄ > 0 such that
(γ1−θ − 1)λ1−θ

k > µ̄ for all k ≥ k0. Therefore, in this case, we also obtain:

0 < µ̄ ≤ λ1−θ
k+1 − λ

1−θ
k . (2.20)

If we set µ̂ = min(µ−1, µ̄) and combine (2.19) and (2.20), we obtain:

0 < µ̂ ≤ λ1−θ
k+1 − λ

1−θ
k .

Summing the last inequality from k0 to k, we obtain λ1−θ
k − λ1−θ

k0
≥ µ̂(k − k0), i.e.:

λk ≤ µ̂
− 1

θ−1

(k−k0)
1

θ−1

for all k ≥ k0. This concludes our proof. ■
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3 General composite higher-order algorithms

In this chapter, we introduce a higher-order algorithmic framework based on the majorization-
minimization approach designed to solve composite optimization problems that involves a

collection of functions which are aggregated in a nonsmooth manner through a merit function
that is convex, nondecreasing, subhomogeneous and with full domain. We derive global conver-
gence guarantees for this method when applied to composite problems with (non)convex and
nonsmooth objective functions, with improved convergence rates under the Kurdyka-Łojasiewicz
(KL) property. We also present an efficient implementation of the proposed method and provide
numerical simulations to demonstrate its effectiveness.

The chapter is structured as follows: Section 3.1 provides a comprehensive literature review of
composite higher-order methods. In Section 3.2, we introduce our general composite higher-order
framework and the associated algorithm. In Section 3.3 we derive global and local convergence
results for this algorithm in both convex and nonconvex scenarios. Additionally, we present an
adaptive scheme that does not require prior knowledge of the Lipschitz constants. The chapter
concludes with Section 3.4, where we present numerical simulations demonstrating the efficiency
of our proposed scheme. The content covered in this chapter is based on the findings reported
in published paper [23].

3.1 State of the art

Efficient decision-making is a innate human desire. One fundamental approach to optimizing a
given function involves a step-by-step minimization of basic models that serve as upper bounds
for the function [53, 54, 55]. Advanced modeling frameworks demand tackling a broader spec-
trum of nonsmooth and nonconvex optimization challenges compared to simpler problems. In
this chapter, our focus is on solving the following composite minimization problem:

min
x
f(x) := g

(
F (x)

)
+ h(x), (3.1)

where h : E → R̄ and F : E → R̄m are general proper lower semicontinuous functions on
their closed domains and g : Rm → R is a proper closed convex increasing, subhomogeneous (see
Definition (2.2.12)) function defined everywhere, and F = (F1, · · · , Fm). This formulation unifies
many particular cases, such as smooth approximation of minimax games, max-type minimization
problems, while recent instances include robust phase retrieval and matrix factorization problems
[21, 22, 56, 57].

Example 3.1.1. (Minimax strategies for nonlinear games) Let us consider the problem:

min
x∈△n

{
f(x) := max

u∈△m

〈F (x), u〉
}
,

where 4n, 4m are the standard simplexes in Rn and Rm, respectively. For example, in matrix
games that is a particular problem in game theory, the function F takes a linear form, more
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precisely, we have 〈F (x), u〉 = 〈Ax, u〉+ 〈b, x〉+ 〈b, u〉 [58]. The smooth approximation for this
problem using the entropy distance is as follows [58]:

min
x∈△n

fµ(x) := max
u∈△m

{
〈F (x), u〉 − µ

m∑
j=1

uj ln(uj)− µ ln(m)
} ,

for some µ > 0. Using Lemma 4 in [58], we get:

fµ(x) = µ ln

 m∑
j=1

e
Fi(x)

µ

 .

Hence, considering g(y) = µ ln
(∑m

j=1 e
yi
µ

)
, then the original minimax problem can be approxi-

mated, for sufficiently small µ, with the composite problem of the form (3.1):

min
x∈∆n

fµ(x) := g(F (x)).

Note that g is indeed convex, increasing and subhomogeneous function, hence, this smooth
re-formulation fits into the composite problem (3.1).

Example 3.1.2. (Min-max problems) Let us consider the following min-max problem:

min
x∈Q

max
i=1:m

Fi(x).

This type of problem is classical in optimization and arises in many fields, from operations
research to statistics and from numerical analysis to finance. Note that if we define g(y) =
maxi=1:m yi and h = 1Q, then, the previous min-max problem can be written as problem (3.1).

Example 3.1.3. (Simple composite problems) Let us consider the following simple composite
minimization problem:

min
x∈Rn

F0(x) + h(x).

Taking F (x) = F0(x) and g the identity function, the previous problem can be written as
problem (3.1).

3.1.1 Simple composite problems

Let as analyse the last example in more details, i.e., when F is a single function and g is the
identity function, problem (3.1) reduces to an optimization problems expressed as:

min
x
f(x) := F0(x) + h(x), (3.2)

with F representing the smooth component and h the nonsmooth component. Significant at-
tention has been devoted to such problems in the domain of large-scale optimization [52, 59,
8]. This formulation, often referred to as simple composite optimization, demands a more so-
phisticated approach. This is where the proximal gradient method comes into play, offering
a structured combination of gradient-based optimization and proximal operators [52, 59, 8].
When F0 has the gradient LF

1 -Lipschitz continuous, for a given current iterate xk, the proximal
gradient method generates the next iterate to be the minimizer of the following model for a
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given positive constant M > 0:

xk+1 = argmin
x
F0(xk) + 〈∇F0(xk), x− xk〉+

M

2
‖x− xk‖2 + h(x)

⇐⇒ xk+1 = prox 1
M

h

(
xk −

1

M
∇F0(xk)

)
.

The proximal gradient method is a fundamental technique for traversing through additive com-
posite minimization (i.e., sum of a smooth and nonsmooth functions) with well-defined conver-
gence rates. The convergence rate for convex f is of order O(k−1) in function values, where k de-
notes the iteration counter. This means that in order to obtain an ϵ solution (i.e., f(xk)−f∗ ≤ ϵ)
one needs to perform O(ϵ−1) number of iterations. However, when f is nonconvex, the conver-
gence rate towards a stationary point is of order O(k− 1

2 ), [52, 59, 8]. Although proximal point
strategies have demonstrated empirical efficacy in handling intricate and difficult optimization
tasks, it’s acknowledged that their convergence rates are slow. A natural way to speed up these
convergence rates is to leverage higher-order information, specifically derivatives, i.e., to use
higher-order information (derivatives) to build a higher-order (Taylor) models. For example,
the classical Newton’s method approximate F0 by its second-order Taylor evaluated in a given
current iteration. Namely, Newton’s method for solving (3.2) is:

xk+1 = argmin
x

F0(xk) + 〈∇F0(xk), x− xk〉+
1

2
〈∇2F0(xk)(x− xk), x− xk〉+ h(x).

If h(·) = 0 and the Hessian ∇2F (xk) is invertible, this step has the following closed form:

xk+1 = xk − (∇2F0(xk))
−1∇F0(xk).

When compared to the proximal gradient method, this scheme clearly has higher computational
cost at every step, given the necessity to invert the Hessian ∇2F0(xk). Nonetheless, there
is reason to believe that exploiting second-order information can significantly accelerate the
convergence rate. Newton’s Method is generally recognized for its local quadratic convergence,
as described in standard literature [38]. More precisely, if the initial point x0 is close to a local
minimum x∗, then Newton’s method has the following quadratic convergence:

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2,

for a given constant c > 0 and for all k ≥ 0. This aspect was further extended to cover com-
posite optimization problems [60]. This method has some potential drawbacks, for example, the
Hessian matrix could be degenerated at the current iteration, leaving the approach ill-defined.
Additionally, it is difficult to establish global convergence for this scheme. Several proposals have
been suggested to improve this iterative process, including the Levenberg-Marquardt regulariza-
tion, the damped Newton method, and the trust-region approach. Refer to [61] for a thorough
analysis of various combinations and implementations of aforementioned ideas. In some recent
publications [62, 63], the authors have established a significant advancement in the realm of
numerical optimization by demonstrating that the incorporation of a quadratic regularization,
yields a pathway to achieve global convergence within Newton’s method in the convex setting.
This finding unveils a promising avenue for enhancing the efficiency and reliability of iterative
optimization algorithms. More precisely, the scheme presented in [62, 63] is of the form:

xk+1 = argmin
x

F0(xk) + 〈∇F0(xk), x− xk〉+
1

2
〈∇2F0(xk)(x− xk), x− xk〉+

βk
2
‖x− xk‖2

⇐⇒ xk+1 = xk − (∇2F0(xk) + βkI)
−1∇F0(xk),

where βk = c
√
‖∇F0(xk)‖ for some appropriate c > 0. While these approaches have made

significant strides in addressing the crucial issue of worst-case guarantees for the global behavior
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of the Newton’s method within the convex setting, a notable gap remains: the absence of a
comprehensive treatment of global convergence for Newton’s method in the nonconvex scenario.
This represents a significant challenge, as the nonconvex landscape poses unique complexities
and requires different tactics to assure convergence across diverse optimization landscapes. In
[10], the cubic regularization of the Newton’s method is present for nonconvex problems. Pa-
per [10] derives the first global convergence rate of cubic regularization of Newton method for
unconstrained smooth nonconvex minimization problems with the hessian Lipschitz continuous
(i.e., using a second-order oracle). Namely, when F0 has the hessian, ∇2F0, LF

2 -Lipschitz, the
scheme presented in [10] aims to solve the following cubic model:

xk+1 = argmin
x

TF0
2 (x;xk) +

M

6
‖x− xk‖3 + h(x)

= argmin
x

F0(xk)+〈∇F0(xk), x− xk〉+
1

2
〈∇2F0(xk)(x− xk), x− xk〉+

M

6
‖x− xk‖3+h(x),

where M is positive constant. When F0 is convex with Hessian Lipschitz continuous, paper
[10] establishes a global convergence in function value of order O(k−2), while in the nonconvex
setting the convergence to an approximate first-order critical point is of order O(k− 2

3 ). Higher-
order methods (or Tensor methods) is a natural generalization of the gradient and the Newton
methods to arbitrary order. Assume that F0 has the p derivative LF

p -Lipschitz (with p ≥ 1
positive integer), then the basic iteration of a higher-order method is as follows:

xk+1 = argmin
x

TF0
p (x;xk) +

M

(p+ 1)!
‖x− xk‖p+1 + h(x),

where xk is the current iteration and M > 0 is a given positive constant and recall that TF0
p is

the Taylor approximation of order p of the function F0 at xk. This idea was first proposed in
the unpublished preprint [11]. As researchers delve deeper into the intricacies of optimization
methods, particularly within the nonconvex setting [13, 14], a notable focus has been placed
on analyzing the complexity of high-order approaches with convergence guarantees, particularly
in terms of the norm of the gradient, and it has been established rate of order O

(
k
− p

p+1

)
.

However, the extensive complexity associated with minimising nonconvex multivariate polyno-
mials has posed significant challenges, rendering this initial effort unsuccessful. Despite these
obstacles, a ray of hope emerged through the groundbreaking research of Nesterov in [12]. Specif-
ically, Nesterov demonstrated that by appropriately regularizing the Taylor approximation, the
auxiliary subproblem remains convex and can be solved efficiently, thereby offering a promis-
ing avenue for tackling convex unconstrained smooth problems (see Lemma 2.2.11 in Chapter
2). The convergence rate of such a scheme for convex problems in function values is of order
O (k−p). Recently, [20] provided a unified framework for the convergence analysis of higher-
order optimization algorithms for solving simple composite optimization problem (3.2) using
the majorization-minimization approach. This is a technique that approximates an objective
function by a majorization function, which can be minimized in closed form or yielding a new
point of some acceptable improvement. A full convergence analysis is performed in [20] for such
an algorithmic framework and both global and local convergence rates are derived.

3.1.2 Composite problems

When optimization problems become more complex, for example, the objective function given
in (3.1) is nonsmooth, see Example 3.1.2, i.e., g(·) = max(·), classic gradient approaches become
limited. In response, subgradient approaches emerge as a versatile alternative that accommo-
dates nonsmooth functions using generalized gradients. These methods broaden the scope of
optimization to domains where classical gradients fail, providing robustness in managing func-
tions with discontinuities or non-differentiable points. Subgradients methods generate the next
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iterates for a given current iterates xk as follows:

xk+1 = xk − αkλk,

where λk ∈ ∂f(xk) and αk is a stepsize. When f is convex function and Lipschitz continuous,
subgradient methods with αk = O(k−

1
2 ) exhibit a sublinear convergence rate and the conver-

gence rate is of order O(k− 1
2 ), which is worse than the proximal gradient based methods (see

Theorem 3.2 in [64]). In response to this issue, a direct extension of the prox-gradient algorithm
to the entire problem class (3.1) has been proposed, which consists in linearizing the smooth
part, leaving the nonsmooth term unchanged and adding an appropriate quadratic regulariza-
tion term. This is the approach considered, e.g., in [56, 65], leading to a proximal Gauss-Newton
method, i.e., given the current point xk and a regularization parameter M > 0, solve at each
iteration the subproblem:

xk+1 = argmin
x

g
(
F (xk) +∇F (xk)(x− xk)

)
+
M

2
‖x− xk‖2 + h(x).

For such a method it was proved in [56] that it converges to a near stationary point at a sublinear
rate of order O(k− 1

2 ), while convergence of the iterates under KL inequality was recently shown
in [65]. In [21] a flexible method is proposed, where the smooth part F is replaced by its
quadratic approximation, i.e., given xk, solve:

xk+1 = argmin
x

g

(
F (xk) +∇F (xk)(x− xk) +

M

2
‖x− xk‖2

)
+ h(x),

where M = (M1, · · · ,Mm)T , with Li being the Lipschitz constant of the gradient of Fi, for
i = 1 : m. Assuming F , g and h are convex functions, and g additionally is component wise
nondecreasing and Lipschitz on its domain, [21] derives sublinear convergence rate of order
O(k−1) in function values. One can notice that all the previously mentioned methods belong to
the category of first-order methods. Despite their demonstrated efficacy in tackling challenging
optimization problems empirically, it is well-established that their convergence speed tends to be
slow. In the recent paper [22], problem (3.1) is considered, where F = (F1, · · · , Fm), with Fi’s
being convex and p-smooth functions on E and having the p-derivative Lipschitz, with p ≥ 1.
Under these settings, [22] replaces the smooth part by its Taylor approximation of order p plus
a proper regularization term, i.e., given xk, solve the following subproblem:

xk+1 = argmin
x

g

(
TF
p (x;xk) +

L

(p+ 1)!
‖x− xk‖p+1

)
,

where L = (L1, · · · , Lm)T , with Li being related to the Lipchitz constant of the p-derivative of
Fi and TF

p (x;xk) is the p-Taylor approximation of F around the current point xk. For such a
higher-order method, in the convex settings and assuming that g has full domain in the second
argument, [22] derives a sublinear convergence rate in function values of order O (k−p).

However, global complexity bounds for higher-order methods based on the majorization-minimization
principle for solving composite problem (3.1) (possibly nonconvex) are not yet given. This is the
goal of this chapter.

3.2 General composite higher-order algorithm

In this section, we propose a higher-order algorithm for solving the composite problem (3.1) and
derive convergence rates.
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Assumption 3.2.1. We consider the following assumptions for optimization problem (3.1):

1. The functions Fi, with i = 1:m, g and h are proper lower semicontinuous on their domains,
satisfy the chain rule (2.14) and domh ⊆ g(domF ).

2. Additionally, g is convex, nondecreasing, with full domain, and subhomogeneous (see Def-
inition 2.2.12).

3. Problem (3.1) has a solution and thus f∗ := inf
x∈dom f

f(x) > −∞.

From Assumption 3.2.1(1), it follows that dom f = domh. Moreover, if Assumption 3.2.1(2)
holds, then from [22](Theorem 4) it follows that:

g(x+ ty) ≤ g(x) + tg(y) ∀t ≥ 0. (3.3)

Further, let us introduce the notion of a higher-order surrogate, see also [20].

Definition 3.2.2. Let ϕ : E → R̄ be a proper lower semicontinuous function and x ∈ domϕ
(assumed closed). We call the function s(· ;x) : E → R̄, with dom s(· ;x) = domϕ, a p higher-
order surrogate of ϕ at x if it has the following properties:

(i) the error function

e(y;x) = s(y;x)− ϕ(y), with y ∈ dom ϕ, (3.4)

is p differentiable on domϕ and the p derivative is smooth with Lipschitz constant Le
p.

(ii) the derivatives of the error function e satisfy

∇ie(x;x) = 0 ∀i = 0 : p, x ∈ domϕ, (3.5)

and there exist a positive constant Re
p > 0 such that

e(y;x) ≥
Re

p

(p+ 1)!
‖y − x‖p+1 ∀x, y ∈ domϕ. (3.6)

Note that dom e (assumed open) usually includes strictly domϕ (see examples below). Moreover,
from (3.6) we have s(y;x) ≥ ϕ(y) for all x, y ∈ domϕ. Next, we give two nontrivial examples of
higher-order surrogate functions, see [20] for more examples.

Example 3.2.3. (Composite functions) Let F1 : E → R be p times differentiable and the p
derivative be Lipschitz with constant LF1

p and let F2 : E→ R̄ be a proper closed function. Then,
for the composite function F = F1+F2, where domF = domF2, one can consider the following
p higher-order surrogate function:

s(y;x) = TF1
p (y;x) +

Mp

(p+ 1)!
‖x− y‖p+1 + F2(y) ∀ x, y ∈ domF,

where Mp > LF1
p . Indeed, from the definition of the error function, we get:

e(y;x) = TF1
p (y;x)− F1(y) +

Mp

(p+ 1)!
‖x− y‖p+1. (3.7)
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Thus e(·;x), with dom e = E and domF ⊆ dom e, has the p derivative Lipschitz with constant
LF1
p +Mp. Further, from the definition of the error function e, we have:

∇ie(x;x) = ∇TF1
p (x;x)−∇iF1(x) = ∇iF1(x)−∇iF (x) = 0 ∀i = 1 : p.

Moreover, since F1 has the p derivative Lipschitz, it follows from (2.4) that:

TF1
p (y;x)− F1(y) ≥

−LF1
p

(p+ 1)!
‖x− y‖p+1.

Combining this inequality with (3.7), we get:

e(y;x) ≥
Mp − LF1

p

(p+ 1)!
‖x− y‖p+1. (3.8)

Hence, the error function e has Le
p =Mp + LF1

p and Re
p =Mp − LF1

p .

Example 3.2.4. (proximal higher-order) Let F : E → R̄ be a proper lower semicontinuous
function. Then, we can consider the following higher-order surrogate function:

s(y;x) = F (y) +
Mr

(r + 1)!
‖y − x‖r+1,

where r is a positive integer. Indeed, the error function is:

e(y;x) = s(y;x)− F (x) = Mr

(r + 1)!
‖y − x‖r+1,

where domF ⊆ dom e = E. In this case, the error function e has the r derivative Lipschitz with
Le
r =Mr and Rr =Mr.

In the following, we assume for problem (3.1) that each function Fi, with i = 1 : m, admits a
p higher-order surrogate as in Definition 3.2.2. Then, we propose the following General Com-
posite Higher-Order algorithm, called GCHO, which is based on the majorization-minimization
principle (i.e., minimizes at each iteration a majorizer of the objective).

Algorithm 1 Algorithm GCHO
Given x0 ∈ dom f . For k ≥ 1 do.
Compute surrogate s(x;xk) :=

(
s1(x;xk), · · · , sm(x;xk)

)
of F near xk.

Compute xk+1 satisfying the following descent:

g
(
s(xk+1;xk)

)
+ h(xk+1) ≤ f(xk). (3.9)

Although our algorithm requires that the next iterate xk+1 only to satisfy the descent (3.9), we
usually generate xk+1 by solving the following subproblem:

min
x
g
(
s(x;xk)

)
+ h(x). (3.10)

If F and h are convex functions, then the subproblem (3.10) can be also convex. Indeed, for
Example 3.2.3, ifMp ≥ pLF1

p and F2 is convex, then the surrogate function s is convex and hence
the problem (3.10) is convex (see Theorem 1 [12]), while for Example (3.2.4), the surrogate is
convex if Mp ≥ 0. Hence, in the convex case we assume that xk+1 is the global optimum of
the subproblem (3.10). However, in the nonconvex case, we cannot guarantee the convexity
of the subproblem. In this case, we either assume that we can compute a stationary point of
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the subproblem (3.10) if g is the identity function or we can compute an inexact solution as
defined in (3.21) if g is a general function. Note that our algorithmic framework is quite general
and yields an array of algorithms, each of which is associated with the specific properties of F
and the corresponding surrogate. For example, if F is a sum between a smooth term and a
nonsmooth one we can use a surrogate as in Example 3.2.3; if F is fully nonsmooth we can use
a surrogate as in Example 3.2.4. This is the first time such an analysis is performed, and most
of our variants of GCHO were not explicitly considered in the literature before (especially in
the nonconvex settings). Note that in both Examples 3.2.3 and 3.2.4, xk+1 can be computed
inexactly, as detailed in the next sections.

3.3 Nonconvex convergence analysis

In this section we consider that each Fi, with i = 1 : m, and h are nonconvex functions (possible
nonsmooth). Then, problem (3.1) becomes a pure nonconvex optimization problem. Now we
are ready to analyze the convergence behavior of GCHO algorithm under these general settings.
In the sequel, we assume that g(−Re

p) < 0. Note that since the vector Re
p > 0, then for all

the optimization problems considered in Examples 3.1.1, 3.1.2 and 3.1.3 this assumption holds
provided that Mp is large enough.

Theorem 3.3.1. Let F , g and h satisfy Assumption 3.2.1 and additionally each Fi admits a p
higher-order surrogate si as in Definition 3.2.2 with the constants Le

p(i) and Re
p(i), for i = 1 : m.

Let (xk)k≥0 be the sequence generated by Algorithm GCHO, Re
p =

(
Re

p(1), · · · , Re
p(m)

)
and

Le
p =

(
Le
p(1), · · · , Le

p(m)
)
. Then, the sequence (f(xk))k≥0 is nonincreasing and satisfies the

following descent relation:

f(xk+1) ≤ f(xk) +
g(−Re

p)

(p+ 1)!
‖xk+1 − xk‖p+1 ∀k ≥ 0. (3.11)

Proof. Denote e(xk+1;xk) =
(
e1(xk+1;xk), · · · , em(xk+1;xk)

)
. Then, from the definition of the

error function e and (3.6), we have:

Re
p

(p+ 1)!
‖xk+1 − xk‖p+1 ≤ e(xk+1;xk) = s(xk+1;xk)− F (xk+1).

This implies that:

F (xk+1) ≤ s(xk+1;xk)−
Re

p

(p+ 1)!
‖xk+1 − xk‖p+1.

Since g is nondecreasing, we get:

g(F (xk+1)) ≤ g
(
s(xk+1;xk)−

Re
p

(p+ 1)!
‖xk+1 − xk‖p+1

)
(3.3)
≤ g

(
(s(xk+1;xk)

)
+
g(−Re

p)

(p+ 1)!
‖xk+1 − xk‖p+1.

Finally, we obtain that:

f(xk+1) ≤ g
(
s(xk+1;xk)) + h(xk+1) +

g(−Re
p)

(p+ 1)!
‖xk+1 − xk‖p+1

(3.9)
≤ f(xk) +

g(−Re
p)

(p+ 1)!
‖xk+1 − xk‖p+1,
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which yields our statement. ■

Summing (3.11) from j = 0 to k, we get:

k∑
j=0

−
g(−Re

p)

(p+ 1)!
‖xj+1 − xj‖p+1 ≤

k∑
j=0

f(xj)− f(xj+1)

= f(x0)− f(xk+1) ≤ f(x0)− f∗.

Taking the limit as k → +∞, we obtain:

+∞∑
k=0

‖xk − xk+1‖p+1 < +∞. (3.12)

Hence limk→+∞‖xk − xk+1‖ = 0. In our convergence analysis, we also consider the following
additional assumption which requires the existence of some auxiliary sequence that must be
closed to the sequence generated by GCHO algorithm and some first-order relation holds:

Assumption 3.3.2. Given the sequence
(
xk
)
k≥0

generated by GCHO algorithm, there exist
two constants L1

p, L
2
p > 0 and a sequence (yk)k≥0 such that:

‖yk+1 − xk‖ ≤ L1
p‖xk+1 − xk‖ and Sf (yk+1) ≤ L2

p‖yk+1 − xk‖p ∀k ≥ 0. (3.13)

In the next section, we provide concrete examples for the sequence (yk)k≥0 satisfying Assumption
3.3.2, and the corresponding expressions for L1

p and L2
p.

3.3.1 Approaching the set of stationary points

Before continuing with the convergence analysis of GCHO algorithm, let us analyze the relation
between ‖xk+1 − xk‖p and Sf (xk+1) and also give examples when Assumption 3.3.2 is satisfied.
For simplicity, consider the following simple composite minimization problem:

min
x
f(x) := F (x) + h(x),

where F is p times differentiable, having the p derivative LF
p -Lipschitz and h is proper lower

semicontinuous function. In this case g is the identity function and we can take as a surrogate
s(y;x) = TF

p (y;x) +
Mp

(p+1)!‖x− y‖
p+1 + h(y), with the positive constant Mp satisfying Mp > LF

p

and g(−Re
p) < 0. The following lemma gives an example when Assumption 3.3.2 holds.

Lemma 3.3.3. Assume g is the identity function, F has the p derivative Lipschitz and xk+1 is
a stationary point of the following subproblem:

xk+1 ∈ argmin
x

TF
p (x;xk) +

Mp

(p+ 1)!
‖x− xk‖p+1 + h(x). (3.14)

Then, Assumption 3.3.2 holds with yk+1 = xk+1, L1
p = 1 and L2

p =
Mp+LF

p

p! .

Proof. Since xk+1 is a stationary point of subproblem (3.14), using (2.14), we get:

Mp

p!
‖xk+1 − xk‖p−1B(xk − xk+1)−∇TF

p (xk+1;xk) ∈ ∂h(xk+1),
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or equivalently

Mp

p!
‖xk+1 − xk‖p−1B(xk − xk+1) +

(
∇F (xk+1)−∇TF

p (xk+1;xk)
)

∈ ∇F (xk+1) + ∂h(xk+1) = ∂f(xk+1).

Taking into account that F is p-smooth, we further get:

Sf (xk+1) ≤
Mp

p!
‖xk+1 − xk‖p + ‖∇F (xk+1)−∇TF

p (xk+1, xk)‖∗ (3.15)

(2.6)
≤

Mp + LF
p

p!
‖xk+1 − xk‖p. (3.16)

Hence, Assumption 3.3.2 holds with yk+1 = xk+1, L1
p = 1 and L2

p =
Mp+LF

p

p! . ■

The algorithm GCHO which generates a sequence (xk)k≥0 satisfying the descent (3.9) and the
stationary condition (3.14) has been also considered, e.g., in the recent papers [20, 19], with h
assumed to be a convex function. Here we remove this assumption on h.

Combining (3.15) and (3.11), we further obtain:

Sf (xk+1)
p+1
p ≤

(
Mp + LF

p

p!

) p+1
p (p+ 1)!

Mp − LF
p

(
f(xk)− f(xk+1)

)
= CMp,LF

p

(
f(xk)− f(xk+1)

)
,

where CMp,LF
p
=

(
Mp + LF

p

p!

) p+1
p (p+ 1)!

Mp − LF
p

. Summing the last inequality from j = 0 : k − 1,

and using that f is bounded from below by f∗, we get:

k−1∑
j=0

Sf (xj)
p+1
p ≤ CMp,LF

p

(
f(x0)− f(xk)

)
≤ CMp,LF

p

(
f(x0)− f∗

)
.

Hence:

min
j=0:k−1

Sf (xj) ≤

(
CMp,LF

p
(f(x0)− f∗)

) p
p+1

k
p

p+1

.

Thus, we have proved convergence for the simple composite problem under slightly more general
assumptions than in [20, 19], i.e., F and h are possibly nonconvex functions. Finally, if we have
‖xk+1 − xk‖p ≤ p!

LF
p +Mp

ϵ, then from (3.15) it follows that Sf (xk+1) ≤ ϵ, i.e., xk+1 is nearly
stationary for f . Note that in the previous Lemma 3.3.3, we assume xk+1 to be a stationary
point of the following subproblem (see (3.14)):

xk+1 ∈ argmin
x

s(x;xk). (3.17)

However, our stationary condition for xk+1 can be relaxed to the following inexact optimality
criterion (see also [13]):

‖gxk+1
‖ ≤ θ‖xk+1 − xk‖p, (3.18)

where gxk+1
∈ ∂s(xk+1;xk) and θ > 0. For simplicity of the exposition, in our convergence

analysis below for this particular case (i.e., g identity function) we assume however that xk+1

satisfies the exact stationary condition (3.17), although our results can be extended to the
inexact stationary condition from above. The situation is dramatically different for the general
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composite problem (3.1). When g is nonsmooth, the distance dist
(
0, ∂f(xk+1)

)
will typically

not even tend to zero in the limit, although we have seen that ‖xk+1 − xk‖p converges to zero.
Indeed, consider the minimization of the following function:

f(x) = max
(
x2 − 1, 1− x2

)
.

For p = 1, we have LF
1 (1) = LF

1 (2) = 2. Taking x0 > 1 and M1 = M2 = 4, then the iterates of
GCHO algorithm are of the form:

xk+1 = argmin
x

Q(x, xk)
(
:= max

(
Q1(x, xk), Q1(x, xk)− 4xxk + 2x2k + 2

))
,

where Q1(x, xk) = 2x2 − 2xxk + x2k − 1. Let us prove by induction that xk > 1 for all k ≥ 0.
Assume that xk > 1 for some k ≥ 0. We notice that the polynomials Q2(x, xk) := Q1(x, xk) −
4xxk+2x2k+2 and Q1(x, xk) are 2-strongly convex functions and they intersect in a unique point
x̄ =

x2
k+1
2xk

. Also, the minimum of Q2 is x̄2 = 3
2xk and the minimum of Q1 is x̄1 := 1

2xk, satisfying
x̄1 ≤ x̄ ≤ x̄2. Let us prove that xk+1 = x̄. Indeed, if x ≤ x̄, then Q(x, xk) = Q2(x, xk) and it
is nonincreasing on (−∞, x̄]. Hence, Q(x, xk) ≥ Q(x̄, xk) for all x ≤ x̄. Further, if x ≥ x̄, then
Q(x, xk) = Q1(x, xk) and it is nondecreasing on [x̄,+∞). In conclusion, Q(x, xk) ≥ Q(x̄, xk)
for all x ≤ x̄. Finally, we have that: Q(x, xk) ≥ Q(x̄, xk) for all x ∈ R. Since xk > 1, we
also get that xk+1 =

x2
k+1
2xk

> 1. Since xk > 1, then ∂f(xk) = 2xk > 2 and Sf (xk) ≥ 2 > 0.
Moreover, xk+1 < xk and bounded below by 1, thus (xk)k≥0 is convergent and its limit is 1.
Indeed, assume that xk → x̂ as k → ∞. Then, we get x̂ = x̂2+1

2x̂ and thus x̂ = 1 (recall that
x̂ ≥ 1). Consequently, ‖xk+1 − xk‖ also converges to 0. Therefore, we must look elsewhere for
a connection between Sf (·) and ‖xk+1 − xk‖p.

Let us now consider the following subproblem:

P(xk) = argmin
y
Mp(y, x) := f(y) +

µp
(p+ 1)!

‖y − xk‖p+1, (3.19)

where µp > g(Le
p). Since f is assumed to be bounded from bellow, then for any fixed x, the

function y 7→ Mp(y, x) is coercive, and hence the optimal value M∗
p = inf

y
Mp(y, x) is finite.

Then, the subproblem (3.19) is equivalent to:

inf
y∈Bk

f(y) +
µp

(p+ 1)!
‖y − xk‖p+1,

for some compact set Bk. SinceMp is proper lower semicontinuous function in the first argument
and Bk is compact set, then from Weierstrass theorem we have that the infimumM∗

p is attained,
i.e., there exists ȳk+1 ∈ P(xk) such that Mp(ȳk+1, xk) = M∗

p. Since the level sets of y 7→
Mp(x, y) are compact, then P(xk) is nonempty and compact and one can consider the point:

yk+1 = argmin
y∈P(xk)

‖y − xk‖. (3.20)

Let us assume that Fi admits a higher-order surrogate as in Definition 3.2.2, where the error
functions ei are p smooth with Lipschitz constants Le

p(i) for all i = 1 : m. Denote Le
p =(

Le
p(1), · · · , Le

p(m)
)
and define the following positive constant Cµp

Le
p
=

µp
µp − g(Le

p)

(
recall that µp

is chosen such that µp > g(Le
p)
)
. Next lemma shows that Assumption 3.3.2 holds provided that

we compute xk+1 as an approximate local solution of subproblem (3.10) (hence, xk+1 doesn’t
need to be global optimum) and yk+1 as in (3.20).

Lemma 3.3.4. Let the assumptions of Theorem 3.3.1 hold, and additionally, there exists δ > 0
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such that xk+1 satisfies the following inexact optimality condition:

g
(
s(xk+1;xk)

)
+ h(xk+1)− min

x: ∥x−xk∥≤Dk

(
g
(
s(x;xk)

)
+ h(x)

)
≤ δ‖xk+1 − xk‖p+1, (3.21)

where Dk :=
(
(p+1)!
µp

(f(xk)− f∗)
) 1

p+1 . Then, Assumption 3.3.2 holds with yk+1 given in (3.20),

L1
p =

(
C

µp

Le
p
+ δ(p+1)!

µp−g(Le
p)

)1/(p+1)
and L2

p =
µp

p! .

Proof. From the definition of yk+1 in (3.20), we have:

f(yk+1) +
µp

(p+ 1)!
‖yk+1 − xk‖p+1 = min

y
f(y) +

µp
(p+ 1)!

‖y − xk‖p+1 (3.22)

≤ f(xk+1) +
µp

(p+ 1)!
‖xk+1 − xk‖p+1.

Further, taking y = xk in (3.22) we also have:

f(yk+1) +
µp

(p+ 1)!
‖yk+1 − xk‖p+1 ≤ f(xk),

which implies that:

‖yk+1 − xk‖ ≤
(
(p+ 1)!

µp
(f(xk)− f∗)

) 1
p+1

= Dk. (3.23)

Note that since the error functions ei’s have the p derivative Lipschitz with constants Le
p(i)’s,

then using (2.4), we get:

|ei(y;xk)− T ei
p (y;xk)| ≤

Le
p(i)

(p+ 1)!
‖y − xk‖p+1 ∀i = 1 : m, ∀y ∈ dom ei.

From (3.5), the Taylor approximations of ei’s of order p at xk, T e
p (y;xk), are zero. Hence:

|si(y;xk)− Fi(y)| = |ei(y;xk)| ≤
Le
p(i)

(p+ 1)!
‖y − xk‖p+1 ∀i = 1 : m. (3.24)

Further, since F (xk+1) ≤ s(xk+1;xk) (see (3.6)) and g is a nondecreasing function, we have:

f(xk+1) ≤ g
(
s(xk+1;xk)

)
+ h(xk+1)

(3.21)
≤ min

y: ∥y−xk∥≤Dk

g
(
s(y;xk)

)
+ h(y) + δ‖xk+1 − xk‖p+1

(3.24)
≤ min

y: ∥y−xk∥≤Dk

g

(
F (y) +

Le
p

p+ 1!
‖y−xk‖p+1

)
+h(y)+δ‖xk+1−xk‖p+1

(3.3)
≤ min

y: ∥y−xk∥≤Dk

f(y) +
g(Le

p)

(p+ 1)!
‖y − xk‖p+1 + δ‖xk+1 − xk‖p+1

(3.23)
≤ f(yk+1) +

g(Le
p)

(p+ 1)!
‖yk+1 − xk‖p+1 + δ‖xk+1 − xk‖p+1.

Then, combining the last inequality with (3.22), we get:

‖yk+1 − xk‖p+1 ≤ µp + δ(p+ 1)!

µp − g(Le
p)
‖xk+1 − xk‖p+1,
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which is the first statement of Assumption 3.3.2. Further, using (2.14) and optimality conditions
for yk+1, we obtain:

0 ∈ ∂f(yk+1) +
µp
p!
‖yk+1 − xk‖p−1B(yk+1 − xk).

It follows that:

Sf (yk+1) ≤
µp
p!
‖yk+1 − xk‖p.

Hence, Assumption 3.3.2 holds with yk+1 given in (3.20), L1
p =

(
C

µp

Le
p
+ δ(p+1)!

µp−g(Le
p)

)1/(p+1)
and

L2
p =

µp

p! . ■

Finally, we provide a third (practical) example satisfying Assumption 3.3.2 when p = 2, h(·) = 0
and g(·) = max(·) function.

Lemma 3.3.5. Let the assumptions of Theorem 3.3.1 hold and additionally assume that p = 2,
g(·) = max(·) and the surrogate function s(·; ·) is given in Example 3.2.3 with F2 = 0. Then, the
global solution of the subproblem (3.10) with h = 0, denoted xk+1, can be computed efficiently
and consequently Assumption 3.3.2 holds with yk+1 given in (3.20), L1

p =
(
C

µp

Le
p

)1/3
and L2

p =
µp

2 .

Proof. Let us first prove that for p = 2, g(·) = max(·) and h(·) = 0, one can compute efficiently
the global solution xk+1 of the subproblem (3.10). Indeed, in this particular case (3.10) is
equivalent to the following subproblem:

min
x∈Rn

max
i=1:m

{
Fi(xk) + 〈∇Fi(xk), x− xk〉+

1

2

〈
∇2Fi(xk)(x− xk), x− xk

〉
(3.25)

+
Mi

6
‖x− xk‖3

}
.

Further, this is equivalent to:

min
x∈Rn

max
u∈∆m

m∑
i=1

uiFi(xk) +

〈
m∑
i=1

ui∇Fi(xk), x− xk

〉

+
1

2

〈
m∑
i=1

ui∇2Fi(xk)(x− xk), x− xk

〉
+

∑m
i=1 uiMi

6
‖x− xk‖3,

where u = (u1, · · · , um) and ∆m := {u ≥ 0 :
∑m

i=1 ui = 1} is the standard simplex in Rm.
Further, this min−max problem can be written as follows:

min
x∈Rn

max
u∈∆M

m∑
i=1

uiFi(xk) +

〈
m∑
i=1

ui∇Fi(xk), x− xk

〉

+
1

2

〈
m∑
i=1

ui∇2Fi(xk)(x− xk), (x− xk)

〉
+max

w≥0

(
w

4
‖x− xk‖2 −

1

12(
∑m

i=1 uiMi)2
w3

)
.

Denote for simplicity Hk(u,w) =
∑m

i=1 ui∇2Fi(xk) +
w
2 I, gk(u) =

∑m
i=1 ui∇Fi(xk), lk(u) =∑m

i=1 uiFi(xk) and M̃(u) =
∑m

i=1 uiMi. Then, the dual formulation of this problem takes the

39



Chapter 3. General composite higher-order algorithms

form:

min
x∈Rn

max
u∈∆m
w∈R+

lk(u) + 〈gk(u), x−xk〉+
1

2
〈Hk(u,w)(x−xk), (x−xk)〉 −

w3

12M̃(u)2
.

Consider the following notations:

θ(x, u) = lk(u) + 〈gk(u), x− xk〉+
1

2

〈(
m∑
i=1

ui∇2Fi(xk)

)
(x−xk), x−xk

〉
+
M̃(u)

6
‖x−xk‖3,

β(u,w) = lk(u)−
1

2

〈
Hk(u,w)

−1g(u), g(u)
〉
− 1

12M̃(u)2
w3,

D =

{
(u,w) ∈ ∆m × R+ : s.t.

m∑
i=1

ui∇2Fi(xk) +
w

2
I � 0

}
.

Below, we prove that if there exists an Mi > 0, for some i = 1 : m, then we have the following
relation:

θ∗ := min
x∈Rn

max
u∈∆m

θ(x, u) = max
(u,w)∈D

β(u,w) = β∗.

Additionally, for any (u,w) ∈ D the direction xk+1 = xk −Hk(u,w)
−1gk(u) satisfies:

0 ≤ θ(xk+1, u)− β(u,w) =
M̃(u)

12

(
w

M̃(u)
+ 2rk

)(
rk −

w

M̃(u)

)2

, (3.26)

where rk := ‖xk+1− xk‖. Indeed, let us first show that θ∗ ≥ β∗. Using a similar reasoning as in
[10], we have:

θ∗ = min
x∈Rn

max
u∈∆m
w∈R+

lk(u) + 〈gk(u), x− xk〉+
1

2
〈Hk(u,w)(x− xk), x− xk〉−

w3

12M̃(u)2

≥ max
u∈∆m
w∈R+

min
x∈Rn

lk(u) + 〈gk(u), x− xk〉+
1

2
〈Hk(u,w)(x− xk), x− xk〉−

w3

12M̃(u)2

≥ max
(u,w)∈D

min
x∈Rn

lk(u)+〈gk(u), x− xk〉+
1

2
〈Hk(u,w)(x− xk), x− xk〉−

w3

12M̃(u)2

= max
(u,w)∈D

lk(u)−
1

2

〈
Hk(u,w)

−1gk(u), gk(u)
〉
− 1

12M̃(u)2
w3 = β∗.

Let (u,w) ∈ D. Then, we have gk(u) = −Hk(u,w)(xk+1 − xk) and thus:

θ(xk+1, u) = lk(u) + 〈gk(u), xk+1 − xk〉

+
1

2

〈(
m∑
i=1

ui∇2Fi(xk)

)
(xk+1 − xk), xk+1 − xk

〉
+
M̃(u)

6
r3k

= lk(u)− 〈Hk(u,w)(xk+1 − xk), xk+1 − xk〉

+
1

2

〈(
m∑
i=1

ui∇2Fi(xk)

)
(xk+1 − xk), xk+1 − xk

〉
+
M̃(u)

6
r3k

= lk(u)−
1

2

〈(
m∑
i=1

ui∇2Fi(xk)+
w

2
I

)
(xk+1−xk), xk+1−xk

〉
−w

4
r2k+

M̃(u)

6
r3k

= β(u,w) +
1

12M̃(u)2
w3 − w

4
r2k +

M̃(u)

6
r3k
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= β(u,w) +
M̃(u)

12

(
w

M̃(u)

)3

− M̃(u)

4

(
w

M̃(u)

)
r2k+

M̃(u)

6
r3k

= β(u,w) +
M̃(u)

12

(
w

M̃(u)
+ 2rk

)(
rk −

w

M̃(u)

)2

,

which proves (3.26). Note that we have [10]:

∇wβ(u,w) =
1

4
‖xk+1 − xk‖2 −

1

4M̃(u)2
w2 =

1

4

(
rk +

w

M̃(u)

)(
rk −

w

M̃(u)

)
.

Therefore, if β∗ is attained at some (u∗, w∗) ∈ D, then we have ∇β(u∗, w∗) = 0. This implies
w∗

M̃(u∗)
= rk and by (3.26) we conclude that θ∗ = β∗.

Finally, if xk+1 is a global solution of the subproblem (3.10) (or equivalently (3.25)), then it
satisfies the inexact condition (3.21) with δ = 0. Hence, using the proof of Lemma 3.3.4 with
δ = 0 we can conclude that Assumption 3.3.2 holds with yk+1 given in (3.20), L1

p =
(
C

µp

Le
p

)1/3
and L2

p =
µp

2 . ■

From the proof of Lemma 3.3.5 one can see that the global minimum of subproblem (3.10) can
be computed as:

xk+1 = xk −Hk(u,w)
−1gk(u),

where Hk(u,w) =
∑m

i=1 ui∇2Fi(xk) +
w
2 I, gk(u) =

∑m
i=1 ui∇Fi(xk) and lk(u) =

∑m
i=1 uiFi(xk),

with (u,w) the solution of the following dual problem:

max
(u,w)∈D

lk(u)−
1

2

〈
Hk(u,w)

−1gk(u), gk(u)
〉
− 1

12(
∑m

i=1 uiMi)2
w3, (3.27)

with D = {(u,w) ∈ ∆m × R+ : s.t. Hk(u,w) � 0}, i.e., a maximization of a concave function
over a convex set D. Hence, if m is not too large, this convex dual problem can be solved
efficiently by interior point methods [66]. In conclusion, GCHO algorithm can be implementable
for p = 2 even for nonconvex problems since we can effectively compute the global minimum
xk+1 of subproblem (3.10) using the powerful tools from convex optimization.

Define the following constant: D
Re

p,L
1,2
p

=
(L1

p(L2
p)

p
)
p+1
p (p+1)!

−g(−Re
p)

. Then, we derive the following
convergence result for GCHO algorithm in the nonconvex case.

Theorem 3.3.6. Let the assumptions of Theorem 3.3.1 hold. Additionally, Assumption 3.3.2
holds. Then, for the sequence (xk)k≥0 generated by Algorithm GCHO we have the following
sublinear convergence rate:

min
j=0:k−1

Sf (yj) ≤

(
D

Re
p,L

1,2
p
(f(x0)− f∗)

) p
p+1

k
p

p+1

.

Proof. From Assumption 3.3.2, we have:

Sf (yk+1) ≤ L2
p‖yk+1 − xk‖p ≤ L2

p

(
L1
p

)p ‖xk+1 − xk‖p.

Using the descent (3.11), we get:

Sf (yk+1)
p+1
p ≤

(
L2
p

(
L1
p

)p) p+1
p (p+ 1)!

−g(−Re
p)

(f(xk)− f(xk+1)) .
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Summing the last inequality from j = 0 : k − 1 and taking the minimum, we get:

min
j=0:k−1

Sf (yj) ≤

(
D

Re
p,L

1,2
p
(f(x0)− f∗)

) p
p+1

k
p

p+1

,

which proves the statement of the theorem. ■

Theorem 3.3.6 requires that xk+1 satisfies the descent (3.9) and Assumption 3.3.2. However
Assumption 3.3.2, according to Lemmas 3.3.3 and 3.3.4, holds if xk+1 is an (inexact) stationary
point or an inexact solution of the subproblem (3.10), respectively.

Remark 1. To this end, Assumption 3.3.2 requires an auxiliary sequence yk+1 satisfying:
‖yk+1 − xk‖ ≤ L1

p‖xk+1 − xk‖

Sf (yk+1) ≤ L2
p‖xk+1 − xk‖p.

(3.28)

If ‖xk+1 − xk‖ is small, the point xk is near yk+1, which is nearly stationary for f (recall that
‖xk+1 − xk‖ converges to 0). Hence, we do not have approximate stationarity for the original
sequence xk but for the auxiliary sequence yk, which is close to the original sequence. Note that
in practice, yk+1 does not need to be computed. The purpose of yk+1 is to certify that xk is
approximately stationary in the sense of (3.28). For p = 1 a similar conclusion was derived in
[56]. For a better understanding of the behavior of the sequence yk+1, let us come back to our
example f(x) = max

(
x2−1, 1−x2

)
and p = 1. Recall that we have proved xk > 1 and choosing

µp = 4, then yk+1 is the solution of the following subproblem:

yk+1 = argmin
y

max
(
y2 − 1, 1− y2

)
+ 2(y − xk)2.

Then, it follows immediately that:

yk+1 =


2
3xk, if xk > 3

2

1, if 1 ≤ xk ≤ 3
2 .

Since we have already proved that xk → 1, we conclude that |yk+1 − xk| → 0 and consequently
dist(0, ∂f(yk+1))→ 0 for k →∞, as predicted by our theory.

3.3.2 Better rates for GCHO under KL

In this section, we show that improved rates can be derived for GCHO algorithm if the objective
function satisfies the KL property. This is the first time when such convergence analysis is
derived for the GCHO algorithm on the composite problem (3.1). We believe that this lack of
analysis comes from the fact that, when g is nonsmooth and different from the identity function,
one can’t bound directly the distance Sf (xk+1) by ‖xk+1 − xk‖. However, using the newly
introduced (artificial) point yk+1, we can now overcome this difficulty.

Lemma 3.3.7. Let (xk)k≥0 generated by Algorithm GCHO be bounded and (yk)k≥0 satisfies
Assumption 3.3.2. Then, (yk)k≥0 is bounded and the set of limit points of the sequence (yk)k≥0

coincides with the set of limit points of (xk)k≥0.
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Proof. Indeed, since (xk)k≥0 is bounded, then it has limit points. Let x∗ be a limit point of the
sequence (xk)k≥0. Then, there exists a subsequence (xkt)t≥0 such that xkt → x∗ for t → ∞.
Furthermore we have:

‖ykt − xkt‖ ≤ ‖ykt − xkt−1‖+ ‖xkt − xkt−1‖ (3.29)
(3.13)
≤

(
L1
p + 1

)
‖xkt − xkt−1‖ ∀k ≥ 0,

Since (xk)k≥0 is bounded and ‖xk+1−xk‖ → 0, then (yk)k≥0 is also bounded. This implies that
ykt → x∗. Hence, x∗ is also a limit point of the sequence (yk)k≥0. Further, let y∗ be a limit point
of the bounded sequence (yk)k≥0. Then, there exists a subsequence (yk̄t)t≥0 such that yk̄t → y∗
for t→∞. Taking t→∞ in an inequality similar to (3.29) and using limt→∞ ‖xk̄t −xk̄t−1‖ = 0
and boundedness of (xk)k≥0, we get that xk̄t → y∗, i.e., y∗ is also a limit point of (xk)k≥0. ■

Note that usually for deriving convergence rates under KL condition, we need to assume that
the sequence generated by the algorithm is bounded (see e.g., Theorem 1 in [46]). Let us denote
the set of limit points of (xk)k≥0 by:

Ω(x0) ={x̄ ∈ E : ∃ an increasing sequence of integers (kt)t≥0, such that xkt → x̄ as t→∞},

and the set of stationary points of problem (3.1) by statf .

Lemma 3.3.8. Let the assumptions of Theorem 3.3.1 hold. Additionally, assume that (xk)k≥0

is bounded, (yk)k≥0 satisfies Assumption 3.3.2 and f is continuous. Then, we have: ∅ 6= Ω(x0) ⊆
statf , Ω(x0) is compact and connected set, and f is constant on Ω(x0), i.e., f(Ω(x0)) = f∗.

Proof. First let us show that f(Ω(x0)) is constant. From (3.11) we have that (f(xk))k≥0 is
monotonically decreasing and since f is assumed bounded from below, it converges, let us say to
f∗ > −∞, i.e. f(xk)→ f∗ as k →∞. On the other hand let x∗ be a limit point of the sequence
(xk)k≥0. This means that there exist a subsequence (xkt)t≥0 such that xkt → x∗. Since f is
continuous, then f(xkt) → f(x∗) = f∗. In conclusion, we have f(Ω(x0)) = f∗. The closeness
property of ∂f implies that Sf (x∗) = 0, and thus 0 ∈ ∂f(x∗). This proves that x∗ is a stationary
point of f and thus Ω(x0) is nonempty. By observing that Ω(x0) can be viewed as an intersection
of compact sets:

Ω(x0) = ∩q≥0∪k≥q{xk},

so it is also compact. This completes our proof. ■

Note that f∗ from Lemma 3.3.8 is usually different from f∗ = infx∈dom f f(x) defined in Assump-
tion 3.2.1. In addition, let us consider the following assumption:

Assumption 3.3.9. For the sequence
(
xk
)
k≥0

generated by GCHO algorithm, there exist pos-
itive constants θ1,p, θ2,p > 0 such that:

f(xk+1) ≤ f(yk+1) + θ1,p‖yk+1 − xk‖p+1 + θ2,p‖xk+1 − xk‖p+1 ∀k ≥ 0. (3.30)

Remark 2. Note that Assumption 3.3.9 holds when e.g., g is the identity function or when
(yk)k≥0 is given in (3.20) and xk+1 satisfies (3.21) (see Lemmas 3.3.4 and 3.3.5). Indeed, if g
is the identity function, then taking yk+1 = xk+1 one can see that Assumption 3.3.9 holds for
any θ1,p and θ2,p nonnegative constants. If g is a general function, then Assumption 3.3.9 holds,

43



Chapter 3. General composite higher-order algorithms

provided that xk+1 satisfies the inexact optimality condition (3.21). Indeed, in this case, we
have:

f(xk+1) ≤ g
(
s(xk+1;xk)

)
+ h(xk+1)

(3.21)
≤ min

y: ∥y−xk∥≤Dk

g
(
s(y;xk)

)
+ h(y) + δ‖xk+1 − xk‖p+1

(3.24),(3.3)
≤ min

y: ∥y−xk∥≤Dk

g
(
F (y)

)
+ h(y) +

g(Le
p)

(p+ 1)!
‖y − xk‖p+1 + δ‖xk+1 − xk‖p+1

≤ f(yk+1) +
g(Le

p)

(p+ 1)!
‖yk+1 − xk‖p+1 + δ‖xk+1 − xk‖p+1,

where the last inequality follows taking y = yk+1. Hence, Assumption 3.3.9 holds in this case

for θ1,p =
g(Le

p)

(p+ 1)!
and θ2,p = δ. Finally, if p = 2 and g(·) = max(·), then xk+1 is the global

solution of the subproblem (3.10) and hence, using similar arguments as above, we can prove
that Assumption 3.3.9 also holds in this case.

From previous lemmas, all the conditions of the KL property from Definition 2.3.11 are satisfied.
Then, we can derive the following convergence rates depending on the KL parameter.

Theorem 3.3.10. Let the assumptions of Lemma 3.3.8 hold. Additionally, assume that f
satisfies the KL property (2.16) on Ω(x0) and Assumption 3.3.9 is valid. Then, the following
convergence rates hold for the sequence (xk)k≥0 generated by GCHO algorithm:

• If q ≥ p+1
p , then f(xk) converges to f∗ linearly for k sufficiently large.

• If q < p+1
p , then f(xk) converges to f∗ at sublinear rate of order O

(
1

k
pq

p+1−pq

)
for k

sufficiently large.

Proof. Since (xk)k≥0 and (yk)k≥0 have the same limit points, we get:

f(xk+1)− f∗
(3.30)
≤ f(yk+1)− f∗ + θ1,p‖yk+1 − xk‖p+1 + θ2,p‖xk+1 − xk‖p+1

(2.16)+(3.13)
≤ σqSf (yk+1)

q +
(
θ1,p(L

1
p)

p+1 + θ2,p
)
‖xk+1 − xk‖p+1

(3.13)
≤ σq

(
L2
p(L

1
p)

p
)q ‖xk+1 − xk‖qp +

(
θ1,p(L

1
p)

p+1 + θ2,p
)
‖xk+1 − xk‖p+1.

If we define ∆k = f(xk)−f∗, then combining the last inequality with (3.11), we get the following
recurrence:

∆k+1 ≤ C1 (∆k −∆k+1)
qp
p+1 + C2 (∆k −∆k+1) ,

where C1 = σq(L
2
p(L

1
p)

p)q
(

(p+1)!
−g(−Re

p)

) pq
p+1 and C2 =

(
θ1,p(L

1
p)

p+1 + θ2,p
) (p+1)!

−g(−Re
p)
. Using Lemma

2.4.2, with θ = p+1
pq we get our statements. ■

Remark 3. Contrary to Theorem 3.3.6, under KL we prove in Theorem 3.3.10 that the original
sequence (xk)k≥0 converge in function values. When the objective function f is uniformly convex
of order p + 1 and g not necessarily with full domain, [22] proves linear convergence for their
algorithm in function values. Our results are different, i.e., we provide convergence rates for
GCHO algorithm for possibly nonconvex objective f .
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3.3.3 Convex convergence analysis

In this section, we assume that the objective function f in (3.1) is convex. Since the problem
(3.1) is convex, we assume that xk+1 is a global minimum of the subproblem (3.10), which is
convex provided that Mp is sufficiently large (see Theorem 1 in [12]). Below, we also assume
that the level sets of f are bounded. Since GCHO algorithm is a descent method, this implies
that there exist a constant R0 > 0 such that ‖xk−x∗‖ ≤ R0 for all k ≥ 0, where x∗ is an optimal
solution of (3.1). Then, we get the following sublinear rate for GCHO algorithm.

Theorem 3.3.11. Let F , g and h satisfy Assumption 3.2.1 and additionally each Fi admits a p
higher-order surrogate si as in Definition 3.2.2 with the constants Le

p(i) and Re
p(i), for i = 1 : m.

Additionally, f is a convex function and has bounded level sets. Let (xk)k≥0 be the sequence
generated by Algorithm GCHO, Re

p =
(
Re

p(1), · · · , Re
p(m)

)
and Le

p =
(
Le
p(1), · · · , Le

p(m)
)
. Then,

we have the following convergence rate:

f(xk)− f(x∗) ≤
g(Le

p)R
p+1
0 (p+ 1)p

p!kp
.

Proof. Since F (xk+1) ≤ S(xk+1;xk) (see (3.6)) and g is nondecreasing, we have:

f(xk+1) ≤ g
(
s(xk+1;xk)

)
+ h(xk+1)

(3.17)
= min

x
g
(
s(x;xk)

)
+ h(x)

(3.24)
≤ min

x
g

(
F (x) +

Le
p

(p+ 1)!
‖x− xk‖p+1

)
+ h(x).

Hence we get:

f(xk+1)
(3.3)
≤ min

x
g
(
F (x)

)
+

g(Le
p)

(p+ 1)!
‖x− xk‖p+1 + h(x)

= min
x
f(x) +

g(Le
p)

(p+ 1)!
‖x− xk‖p+1

≤ min
α∈[0,1]

f(xk) + α
[
(f(x∗)− f(xk)

]
+ αp+1 Rp+1

0

(p+ 1)!
g
(
Le
p

)
,

where the last inequality follows from the convexity of f and the boundness of the level sets of
f . The minimum in α ≥ 0 is achieved at:

α∗ =

(
f(xk)− f(x∗)p!
g(Le

p)R
p+1
0

) 1
p

.

We have 0 ≤ α∗ < 1. Indeed, since
(
f(xk)

)
k≥0

is decreasing, we have:

f(xk) ≤ f(x1) ≤ g
(
s(x1;x0)

)
+ h(x1) = min

x
g
(
s(x;x0)

)
+ h(x)

(3.24)
≤ min

x
g

(
F (x) +

Le
p

(p+ 1)!
‖x− x0‖p+1

)
+ h(x)

≤ g
(
F (x∗) +

Le
p

(p+ 1)!
‖x∗ − x0‖p+1

)
+ h(x∗)

≤ f(x∗) +
g(Le

p)R
p+1
0

(p+ 1)!
.
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Hence:

0 ≤ α∗ ≤

((
f(x1)− f(x∗)

)
p!

g(Le
p)R

p+1
0

) 1
p

≤

(
g(Le

p)R
p+1
0 p!

g(Le
p)R

p+1
0 (p+ 1)!

) 1
p

=

(
p!

(p+ 1)!

) 1
p

=

(
1

p+ 1

) 1
p

< 1.

Thus, we conclude:

f(xk+1) ≤ f(xk)− α∗

(
f(xk)− f(x∗)−

g(Le
p)R

p+1
0

(p+ 1)!
(α∗)p

)

= f(xk)−
pα∗

p+ 1

[
f(xk)− f(x∗)

]
.

Denoting δk = f(xk)− f(x∗), we get the following estimate:

δk − δk+1 ≥ Cδ
p+1
p

k ,

where C = p
p+1

(
p!

g(Le
p)R

p+1
0

) 1
p

. Thus, for µk=Cpδk we get the following recurrence:

µk − µk+1 ≥ µ
p+1
p

k .

Following the same proof as in [12](Theorem 4), we get:

1

µk
≥

 1

µ
1
p

1

+
k − 1

p

p

.

Since:
1

µ
1
p

1

=
1

Cδ1
1
p

=
p+ 1

p

(
g(Le

p)R
p+1
0

p!(f(x1)− f∗)

) 1
p

≥ 1

p
(p+ 1)

p+ 1

p ,

then:

δk = C−pµk =

(
p+ 1

p

)p g(Le
p)R

p+1
0

p!
µk

≤
(
p+ 1

p

)p g(Le
p)R

p+1
0

p!

(
1

p
(p+ 1)

p+1
p +

k − 1

p

)−p

=
g(Le

p)R
p+1
0

p!

(
(p+ 1)

1
p +

k − 1

p+ 1

)−p

≤
(p+ 1)pg(Le

p)R
p+1
0

p!kp
.

This proves the statement of the theorem. ■

Note that in the convex case the convergence results from [56, 21, 22] assume Lipschitz continuity
of the p derivative of the object function F , which may be too restrictive. However, Theorem
3.3.11 assumes Lipschitz continuity of the p derivative of the error function e(·) (note that we
may have the error function e(·) p times differentiable and with the p derivative Lipschitz, while
the objective function F may not be even differentiable, see Examples 3.2.3 and 3.2.4). Hence,
our proof is different and more general than [56, 21, 22]. Moreover, our convergence rate from
the previous theorem covers the usual convergence rates O( 1

kp ) of higher-order Taylor-based
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methods in the convex unconstrained case [12], simple composite case [12, 19] and composite
case for p ≥ 1 [22, 21]. Therefore, Theorem 3.3.11 provides a unified convergence analysis
for general composite higher-order algorithms, that covers in particular, minimax strategies
for nonlinear games, min-max problems and simple composite problems, under possibly more
general assumptions.

3.3.4 Adaptive GCHO algorithm

In this section, we propose an adaptive variant of GCHO algorithm. Since the surrogate functions
in all the examples given in this chapter depend on a given constant M (see Examples 3.2.3
and 3.2.4, where M = Mp), below we consider the following notation s(·; ·) := sM (·; ·). Note
that the convergence results from Theorems 3.3.1, 3.3.6 and 3.3.10 are derived provided that
Assumption 3.3.2 and 3.3.9 and the following properties of the sequence (xk)k≥0 generated by
GCHO algorithm hold:

g
(
sM (xk+1;xk)

)
+ h(xk+1) ≤ f(xk), (3.31)

g(sM (xk+1;xk))− g(F (xk+1)) ≥
Ce
p

(p+ 1)!
‖xk+1 − xk‖p+1, (3.32)

where Ce
p := −g(−Re

p) is a given constant depending on the choice of the surrogate sM (xk+1;xk),
which may be difficult to find in practice. Hence, in the following we propose an adaptive general
composite higher-order algorithm, called (A-GCHO):

Algorithm 2 Algorithm A-GCHO
Given x0 and M0, R0 > 0 and i, k = 0.
while some criterion is not satisfied do

1. Compute a p higher-order surrogate s2iMk
(·;xk) of F near xk.

2. Compute xk+1 satisfying the descent (3.31) with M = 2iMk.
if (3.32) holds with Ce

p = −g(−Rp) and M = 2iMk, then go to step 3.
else set i = i+ 1 and go to step 1.

end if
3. set k = k + 1, Mk+1 = 2i−1Mk and i = 0.

end while

For a better understanding of this process, let us consider Example 3.2.3, where F = F1 + F2,
having the p derivative of F1 L

F1
p -Lipschitz and F2 proper closed convex function. Then, in

this case, the surrogate is sM (y;x) = TF 1

p (y;x) + M
(p+1)!‖y − x‖

p+1 + F2(y). Let Rp,M0 > 0

be fixed. Then, step 1 in A-GCHO algorithm can be seen as a line search procedure (see
for example [67]): that is, at each step k ≥ 0 we choose Mk ≥ M0, then build sMk

(y;xk) =

TF 1

p (y;xk) +
Mk

(p+1)!‖y − xk‖
p+1 + F2(y) and compute xk+1 satisfying (3.31). If (3.32) doesn’t

hold, then we increase Mk ← 2 ·Mk, recompute sMk
(y;xk) using the new Mk and go to step 2.

We repeat this process until condition (3.32) is satisfied. Note that this line search procedure
finishes in a finite number of steps. Indeed, ifMk ≥ Rp+L

F 1

p , then from inequality (3.8), we get
sMk

(y;xk)− F (y) ≥ Rp

(p+1)!‖y − xk‖
p+1 for all y and thus for y = xk+1 and g increasing function

(3.32) holds. Note also that in this case, the error function e satisfies Definition 3.2.2 (i) with
Le
p = 2(Rp + LF 1

p ). Hence, using the same convergence analysis as in the previous sections,
we can derive similar convergence rates as in Theorems 3.3.1, 3.3.6 and 3.3.10 for A-GCHO
algorithm under Assumption 3.3.2 and 3.3.9, since the sequence (xk)k≥0 generated by A-GCHO
automatically satisfies (3.31) and (3.32). For the convex case, as in Section 3.4, in A-GCHO
algorithm, we require that xk+1 is the global solution of the corresponding subproblem, and
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consequently, similar convergence results as in Theorem 3.3.11 can be derived for this adaptive
general composite higher-order algorithm.

3.4 Numerical simulations

In this section, we present some preliminary numerical results for GCHO algorithm. For simu-
lations, we consider the tests set from [68]. In [68], one can find systems of nonlinear equations,
where one searches for x∗ such that Fi(x

∗) = 0 for all i = 1, · · · ,m. For solving these problems,
we implement our GCHO algorithm for p = 1, 2. We consider two formulations: min-max and
least-squares problems, respectively. The min-max formulation has the form:

min
x∈Rn

f(x) := max(F 2
1 (x), · · · , F 2

m(x)). (3.33)

Similarly, the least-squares problem formulation can be also written as a simple composite
minimization problem:

min
x∈Rn

f(x) :=

m∑
i=0

F 2
i (x). (3.34)

Note that both formulations fit into our general problem (3.1). We consider the following 2
implementations: First, for problem (3.33), we compare GCHO algorithm for p = 1, 2 with
IPOPT (the results are given in Table 3.1). Secondly, for problem (3.34), we compare GCHO
algorithm for p = 1, 2 with IPOPT and the method proposed in [69] (the results are given in
Table 3.2). At each iteration of GCHO algorithm, we replace each function Fi by its Taylor
approximation of order p, with p = 1, 2, and a quadratic/cubic regularization and solve the
corresponding subproblem (3.10) using IPOPT [70]. In the numerical simulations, we have
noticed that for p = 2 IPOPT was able to detect a global minimizer of the subproblem at each
iteration, i.e., the solution of IPOPT coincided with the solution obtained by solving the dual
problem, as described in the proof of Lemma 3.3.5 given in the appendix. Since it is difficult to
compute the corresponding Lipschitz constants for the gradient/hessian, we use the line search
procedure described in Section 3.3.4. Note that since in practice it is difficult to compute the
sequence (yk)k≥1, we cannot consider dist(0, ∂f(yk)) ≤ ϵ as a stooping criterion for the proposed
algorithm. Thus, the stopping criterion considered in our simulations is the same as in [71]:

f(xk)− fbest
max(1, fbest)

≤ 10−4,

where fbest = f∗ ≈ 0, but positive, and the starting point x0 are taken from [68]. In Ta-
bles 3.1 and 3.2, we summarize our numerical results in terms of cpu time and number of
iterations for GCHO algorithm p = 1, 2, IPOPT and [69]. Note that the test functions we
consider in the two tables are nonconvex and most of them satisfy the KL condition (as semi-
algrabraic functions). From the tables, we observe that GCHO algorithm (p = 1 or p = 2)
applied to the min-max formulation performs better than the GCHO algorithm (p = 1 or
p = 2) applied to the the least-squares problem, both in cpu time and number of iterations.
This is due to the fact that the regularization constants for the min-max problem (3.33),
Mmax

p =
(
Mmax

p (1), · · · ,Mmax
p (m)

)
, are much smaller than the one for the least-squares for-

mulation (3.34), M ls
p , i.e., M ls

p ≈
∑m

i=1M
max
p (i). Moreover, from the tables we observe that

increasing the order of the Taylor approximation is beneficial for the GCHO algorithm: e.g., in
the min-max formulation, GCHO with p = 2 is at least twice faster than GCHO with p = 1. We
also observe from Table 3.2 that GCHO algorithm applied to min-max formulation for p = 2
has a better behavior (in both cpu time and number of iterations) than the method proposed in
[69] for the least-squares formulation. Finally, GCHO algorithm (p = 1, 2) for both formulations
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is able to identify the global optimal points/values given in [68], while IPOPT directly applied
to the formulations (3.34) or (3.33) may fail to identify the global optimal points/values (see
Tables 2 and 3).

min-max formulation GCHO(p=1) GCHO(p=2) IPOPT for (3.33)
test functions iter cpu iter cpu iter cpu
(2) Fre 32 0.78 5 0.18 85 0.01
(7) Hel 33 0.74 11 0.4 29 0.02
(8) Bar 19 0.69 8 0.42 27 0.06∗
(9) Gau 9 0.33 2 0.15 16 0.04∗
(12) Box 23 0.9 9 0.5 36 0.08∗
(15) Kow (m = 11, n = 4) 48 0.7 7 0.35 5000 7.8∗
(17) Osb-1(m = 33, n = 5) 57 3.8 9 1.7 40 0.9
(18) Big (m = 13, n = 6) 149 7.73 14 0.6 593 1.5∗
(19) Osb-2 (m=65, n=11) 67 18.75 20 12.1 55 3.7∗
(20) Wat (m=31,n=9) 23 2.56 7 2.63 5000 50.5∗
(21) E-Ros (n = m = 6) 21 0.63 3 0.21 379 0.72
(21) E-Ros (n = m = 20) 26 1.7 3 0.53 124 3.8
(21) E-Ros (n = m=100) 25 102.5 5 40.1 119 133.9
(24) Pen II (n = 10) 61 6.4 3 0.32 64 0.9∗
(26) Tri (n = 10) 20 0.53 3 0.22 45 0.2∗
(30) Bro (n = 10) 44 0.88 3 0.25 118 0.3∗

Table 3.1: Behaviour of GCHO for p = 1, 2 and IPOPT for the min-max formulation (3.33).
Here ”*” means that IPOPT didn’t find x∗/f∗ reported in [68].

L.S formulation GCHO(p=1) GCHO(p=2) [69] IPOPT for (3.34)
test functions iter cpu iter cpu iter cpu iter cpu
(2) Fre 562 7.2 23 0.48 7 0.19 85 0.06
(7) Hel 59 1.2 25 0.95 15 0.55 12 0.02
(8) Bar 88 1.3 13 0.5 12 0.48 26 0.04
(9) Gau 71 1.25 13 0.65 5 0.17 8 0.03∗
(12) Box 719 12.1 51 2.05 13 0.68 34 0.05
(15) Kow 534 13.1 14 0.67 10 0.49 825 1.98∗
(17) Osb-1 815 45.8 101 9.6 18 3.6 103 1.9
(18) Big 968 18.5 44 2.19 17 0.79 44 0.15∗
(19) Osb-2 365 45.9 82 35.6 29 15.3 329 11.5∗
(20) Wat 161 50.6 21 7.6 10 3.66 794 8.16∗
(21) E-Ros 2563 38.7 12 0.93 4 0.28 83 0.33
(21) E-Ros 3040 82.3 28 9.4 5 1.53 233 1.8
(21) E-Ros 530 253 33 288.2 7 71.5 223 162.4
(24) Pen II 147 10.2 7 0.8 3 0.35 22 0.08∗
(26) Tri 28 0.55 5 0.3 3 0.22 26 0.05∗
(30) Bro 56 0.9 12 0.59 4 0.35 36 0.07∗

Table 3.2: Behaviour of GCHO algorithm for p = 1, 2, algorithm [69] and IPOPT for the least-
squares problem (3.34). Here ”*” means that IPOPT didn’t find x∗/f∗ reported in
[68].
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3.5 Conclusions

This chapter considers higher-order algorithms for solving composite problems, where the first
term involves a composition between a convex, increasing, subhomogeneous merit function and a
(non)smooth map. We derive global convergence guarantees for the proposed algorithm in terms
of first-order stationarity and characterize a local convergence rate in function value under the
Kurdyka-Łojasiewicz property. We present an efficient implementation of the proposed methods
and provide a numerical comparison with existing methods from the literature.
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4 Moving higher-order Taylor approximations
algorithm for functional constraints
minimization

Following our previous chapter, now we consider solving simple composite oprimization prob-
lems with functional constraints and develop a moving higher-order Taylor approximations

algorithm for solving these problems, called MTA. We derive global convergence guarantees
in both nonconvex and convex cases. We also show that the proposed algorithm, MTA, is
implementable and efficient in numerical simulations.

The chapter is structured as follows: Section 4.1 provides a comprehensive literature review
of first and higher-order methods for optimization problems with functional constraints. In
Section 4.2, we introduce our composite higher-order framework and the associated algorithm.
In Section 4.3 we derive global and local convergence results for this approach in nonconvex
scenarios. Further, in Section 4.4 we derive global convergence results for this approach in
(uniformly)convex case. In Section 4.5, we present an efficient implementation of the method.
The chapter concludes with a summary of the numerical simulations and their results. The
content presented in this chapter is derived from the paper [26].

4.1 State of the art

In this chapter, we delve into a specific class of composite optimization problems. Specifically,
we consider the following simple composite minimization problem that incorporates nonlinear
functional constraints:

min
x∈E

F (x) := F0(x) + h(x) (4.1)

s.t. : Fi(x) ≤ 0 ∀i = 1 : m,

where Fi : E 7→ R, for i = 0 : m, are continuous differentiable functions (possibly nonconvex)
and h : E 7→ R̄ is proper and convex function. We have m nonlinear inequality constraints.
Problem (4.1) is now called a nonlinear programming problem. This problem is equivalent to:

min
x
g(F (x)) + h(x),

with g being equal to g(y0, · · · , ym) := y0 + 1Rm
−
(y1, · · · , ym). Nonlinear programming problems

have a long and rich history (see, for example, the monograph [72]), because they model many
practical applications. Some of the most common are power systems, engineering design, control,
signal and image processing, machine learning, and statistics, see e.g., [73, 74, 75, 76, 77, 78].

4.1.1 First-order methods

By now, the benefits of modeling problems as convex optimization problems should be quite
clear for the reader: convex optimization problems are generally solvable at a global level, and
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the solutions can typically be obtained quickly. Sequential Convex Programming (SCP) is a
local optimization method for nonconvex problems, employing convex optimization as a key
component [49, 79]. The fundamental concept is straightforward, the convex elements of the
problem are solved precisely and efficiently, while the nonconvex elements are approximated
with convex functions that are at least locally accurate. For solving problem (4.1), and for a
given xk, SCP generate the next iteration xk+1 by solving the following convex subproblem:

xk+1 = argmin
x

s0(x;xk) + h(x)

s.t.: si(x;xk) ≤ 0, i = 1 : m,

x ∈ ∆k,

where ∆k is a trust region. The models si(x;xk)’s may be either an affine (first-order) Taylor
approximation:

si(x;xk) := Fi(xk) + 〈∇Fi(xk), x− xk〉,

or the convex part of the second order Taylor expansion:

si(x;xk) := Fi(xk) + 〈∇Fi(xk), x− xk〉+
1

2
(x− xk)TP k

i (x− xk),

where P k
i ’s are the positive semidefinite part of the Hessian, i.e., for ∇2Fi(xk) = Uk

i Σ
k
i U

T,k
i , then

P k
i = Uk

i

[
Σk
i

]
+
UT,k
i , which simply zeroes out all negative eigenvalues of ∇2Fi(xk). SCP is a

heuristic approach that may not always yield the optimal solution. Furthermore, its effectiveness
is influenced by the choice of the initial starting point x0.

4.1.2 Interior point methods

The interior point method (IPM) is an optimization technique designed to solve constrained op-
timization problems, particularly those that involve inequalities, as in (4.1). Unlike the Simplex
algorithm, which navigates along the boundary of the feasible region, the interior point method
finds optimal solutions by starting from within the feasible region and progressively moving
towards the boundary, where the optimal solution is often located.

Inequality constraints impose limits on the solution space, defining where solutions are permit-
ted. The interior point method incorporates these constraints by introducing a barrier term in
the objective function. This barrier penalizes the approach toward the boundary, preventing the
solution from crossing into infeasible territory [38, 80]. By strategically increasing the barrier
parameter as the algorithm progresses, the method guides the optimization process towards the
boundary while ensuring compliance with the constraints. More precisely, IPM transform the
constrained problem into an unconstrained problem using a barrier function that penalizes the
violation of constraints:

ϕ(x, µ) = F0(x) + h(x)− µ
m∑
i=1

log(−Fi(x)),

where µ > 0 is the barrier parameter. Then, it uses an optimization method (like Newton’s
method or gradient-based approaches) to solve the unconstrained problem derived from the
barrier function.

Interior point methods are widely used in large-scale optimization, particularly for linear pro-
gramming, nonlinear programming, and convex optimization (for more details, refer to the books
by Nesterov [38] and Boyd and Vandenberghe [80]). Their ability to handle complex constraint
structures and the fact that they enjoy fast convergence make them a popular choice for solving
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a range of optimization problems. While IPMs are efficient for linear and convex optimization,
they can become significantly more complex for nonlinear problems, particularly when dealing
with non-convex constraints. The convergence behavior might be less predictable, and ensuring
global optimality becomes more challenging.

4.1.3 Primal-dual algorithms

In the context of optimization, the primal problem is the original optimization problem that
one seeks to solve, while the dual problem is derived from the primal by associating Lagrange
multipliers (also known as dual variables) with the constraints [49]. Primal-dual algorithms
work with both problems at once, using the insights from one to guide the progress in the other.

This primal-dual approach is particularly useful when constraints are involved, as it allows the
algorithm to balance the primal objective with the dual representation, helping to ensure that
the constraints are satisfied. The Lagrangian function associated to the nonlinear programming
problem (4.1) takes the following form:

L(x, λ) := F0(x) +

m∑
i=1

λiFi(x).

Below, we present two of the most fundamental primal-dual algorithms, that are Sequential
Quadratic Programming (SQP) and Lagrangian methods.

Sequential Quadratic Programming methods

Sequential Quadratic Programming (SQP) is a type of primal-dual algorithms used to solve
nonlinear optimization problems with both equality and inequality constraints. SQP operates
by approximating the problem at each iteration with a quadratic programming subproblem,
derived from a second-order Taylor expansion of the primal objective function and linearizations
of the constraints. More precisely, SQP generate and solve the following Quadratic Programming
(QP) subproblem for a given current iteration xk and a dual multipliers λk [49]:

xk+1 = argmin
x

TF0
1 (x;xk) +

1

2
(x− xk)T∇2

xxL(xk, λk)(x− xk)

s.t.: TFi
1 (x;xk) ≤ 0, i = 1 : m,

where we recall TFi
1 (x, xk) = Fi(xk)+ 〈∇Fi(xk), x−xk〉. In SQP, the dual problem is integrated

into the algorithm through Lagrange multipliers, which represent the influence of the constraints
on the primal objective. By solving these quadratic programming subproblems, SQP iteratively
refines both the primal and dual solutions, leading to a convergence towards optimality while
satisfying the problem’s constraints.

The performance of SQP can be influenced by the choice of initial estimates for the solution and
Lagrange multipliers. Poor initial estimates might lead to slower convergence or even failure of
converge, additionally, it may struggle with non-convex optimization problems. Non-convexity
can lead to convergence issues, local minima, and difficulties in ensuring global optimality.

Augmented Lagrangian methods

Augmented Lagrangian methods are a powerful class of optimization techniques used to solve
constrained optimization problems, especially when other methods might struggle with the pres-
ence of constraints. These methods combine Lagrange multipliers with penalty terms to create
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an augmented Lagrangian function that incorporates both the original objective and constraints.
The motivation behind these methods is to address the limitations of pure penalty methods while
maintaining the ability to handle complex constraint structures. By integrating penalty terms
with the traditional Lagrange multipliers, these methods can effectively handle constraint sat-
isfaction while avoiding the need for excessively large penalty parameters [49, 81, 82]. A typical
augmented Lagrangian algorithm for solving this problem involves the following steps:

• Define the augmented Lagrangian with a penalty parameter ρ > 0 [83]:

L(x, λ, ρ) = F0(x) +
ρ

2

m∑
i=1

max
(
Fi(x) +

λi

ρ
, 0

)2

,

where the Lagrange multipliers λi represent the dual variables corresponding to the in-
equality constraints.

• For a given set of Lagrange multipliers λk and penalty parameter ρk, find the minimizer
xk+1 of L(x, λk, ρk).

• Update the Lagrange multipliers based on constraint violations:

λik+1 = max
(
0, λik + ρkFi(xk+1)

)
, ∀i = 1 : m.

• Increase the penalty parameter to ensure stronger enforcement of constraints. A common
strategy multiplies the penalty parameter by a constant factor: ρk+1 = αρk, where α > 1.

Despite its strengths, the augmented Lagrangian methods for inequality constraints has some
limitations:

• The choice of the penalty parameter ρk and its update rate affect convergence and perfor-
mance. Tuning these parameters requires expertise and might involve trial and error.

• Each iteration involves solving an optimization problem, which can be computationally
expensive, especially for large-scale or nonconvex problems.

• Convergence can be slow or unstable if the penalty parameter is not properly adjusted or
if the Lagrange multipliers are initialized poorly.

Various methods have been proposed in the literature to address these challenges. For smooth
nonconvex problems, the approach presented in [84] achieves a complexity of order O(ϵ−3). For
smooth convex problems, a sublinear convergence rate of order O(ϵ−1) has been established
in [85, 86]. Additionally, some techniques transform inequality constraints into equalities by
introducing slack variables, as discussed in [87]. In situations where only equality constraints
are present, augmented Lagrangian-based methods can be particularly effective, as demonstrated
in [88] and related references. Typically, they have a computational complexity of orderO(ϵ−2),
indicating that the computational effort required is inversely proportional to the square of the
desired solution precision.

4.1.4 Moving balls approximation type methods

For the particular class of constrained optimization problems with smooth data, [24] introduces
a moving ball approximation method (MBA) that approximates the objective function with a
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quadratic and the feasible set by a sequence of appropriately defined balls. Namely, the algorithm
presented in [24] is of the form:

xk+1 = argmin
x

F0(xk) + 〈F0(xk), x− xk〉+
M

2
‖x− xk‖2

s.t.: Fi(xk) + 〈∇Fi(xk), x− xk〉+
Mi

2
‖x− xk‖2 ≤ 0, i = 1 : m

where M and Mi’s are positive constants and xk is the current iteration. The authors pro-
vide asymptotic convergence guarantees for the sequence generated by MBA when the data is
(non)convex, and linear convergence if the objective function is strongly convex. Later, several
papers considered variants of the MBA algorithm; see [21, 89, 25]. For example, in [25] the
authors present a line search MBA algorithm for difference-of-convex minimization problems
and derive asymptotic convergence in the nonconvex settings and local convergence in the iter-
ates when a special potential function related to the objective satisfies the Kurdyka-Lojasiewicz
(KL) property. In [21], the authors consider convex composite minimization problems that
cover, in particular, problems of the form (4.1), and use a similar MBA type scheme for solving
such problems, deriving a sublinear convergence rate for it. Stochastic variants of moving balls
approximation framework has been recently proposed in [90] and sublinear convergence rates
have been derived in the strongly convex and convex cases. Note that all these previous meth-
ods are first-order methods, and despite their empirical success in solving difficult optimization
problems, their convergence speed is known to be slow.

4.1.5 Higher-order methods for functional constraints minimization

Several papers have already proposed higher-order methods for solving composite optimization
problems of the form (4.1) with complexity guarantees, see, e.g., [91, 92, 22, 93]. For exam-
ple, in a recent paper [22], the authors consider fully composite problems (which cover, as a
particular case, (4.1)) and assume the data are p times continuously differentiable with the pth
derivative Lipschitz. At each iterations, it builds a p higher-order model and solves the following
subproblem:

xk+1 = argmin
x

TF0
p (x;xk) +

M0

(p+ 1)!
‖x− xk‖p+1

s.t.: TFi
p (x;xk) +

Mi

(p+ 1)!
‖x− xk‖p+1 ≤ 0, i = 1 : m.

When Fi’s are uniformly convex, they derive linear convergence in function values, but there is
no convergence analysis for general convex case. For nonconvex problems, [91] derives worst-
case complexity bounds for computing approximate first-order critical points using higher-order
derivatives for problem (4.1) with nonlinear equality constraints. Paper [92] also considers prob-
lem (4.1) with nonlinear equality constraints and employs an approach wherein the objective is
approximated with a model of arbitrarily high-order while the constraints remain unchanged.
Each iteration requires the computation of an approximate KKT point for the subproblem, de-
voiding of any constraint qualification condition. The authors show that their scheme converges
to an approximate KKT point within O

(
ϵ
− p+β

p+1−β

)
iterations, where β ∈ [0, 1]. We refer to the

recent book [93] for a more detailed exposition on higher-order methods.

4.2 Moving higher-order Taylor approximations method

In this section, we introduce a new higher-order algorithm, which we call Moving higher-order
Taylor Approximations (MTA) algorithm, for solving the constrained optimization problem (4.1)
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(possibly nonconvex). We denote the feasible set of (4.1) by F = {x ∈ E : Fi(x) ≤ 0 ∀i = 1 :
m}.We consider the following assumptions for the objective and the constraints:

Assumption 4.2.1. We have the following assumptions for problem (4.1):

1. The (possibly nonconvex) function F0 is p-times continuously differentiable (with p ≥ 1)
and its pth derivative satisfy the Lipschitz condition:

‖DpF0(x)−DpF0(y)‖ ≤ Lp‖x− y‖ ∀x, y ∈ E.

2. The (possibly nonconvex) constraints Fi are q-times continuously differentiable (with q ≥
1) and their qth derivatives satisfy the Lipschitz condition:

‖DF q
i (x)−DF

q
i (y)‖ ≤ L

i
q‖x− y‖ ∀x, y ∈ E, i = 1 : m.

3. h is a simple convex and locally Lipschitz continuous function.

Next, we assume that our problem is feasible and has bounded level sets:

Assumption 4.2.2. Problem (4.1) is feasible, i.e., F 6= ∅ and the set:

A(x0) := {x ∈ E : x ∈ F and F (x) ≤ F (x0)},

is bounded for any fixed x0 ∈ F .

Finally, we assume that the MFCQ holds for the problem (4.1):

Assumption 4.2.3. The MFCQ holds for the optimization problem (4.1):

∀x ∈ F ∃ d ∈ E s.t. 〈∇Fi(x), d〉 < 0 ∀i ∈ I(x),

where I(x) := {i ∈ [m], Fi(x) = 0}.

Note that Assumptions 4.2.2 and 4.2.3 are standard in the context of nonlinear programming.
In particular, the MFCQ guarantees the existence of bounded Lagrange multipliers satisfying
the KKT optimality conditions at any x. Note that in general, for an optimization algorithm, if
one wants to prove only local convergence rates around a local minimum x∗, then is is sufficient
to require MFCQ to hold only at x∗ (see Section 2.4). However, if we want to prove global
convergence for an algorithm, one needs to require MFCQ to hold on a set where the iterates
lie [94, 95, 96]. From Assumption 4.2.1, we have for all x, y ∈ E [12]:

|F0(y)− TF0
p (y;x)| ≤ Lp

(p+ 1)!
‖y − x‖p+1, (4.2)

|Fi(y)− TFi
q (y;x)| ≤

Li
q

(q + 1)!
‖y − x‖q+1, i = 1 : m, (4.3)

At each iteration our algorithm constructs Taylor approximations for the objective function
and the functional constraints using the inequalities given in (4.2) and (4.3). To this end, for
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simplicity, we consider the following notations:

sMMp
(y;x)

def
= TF0

p (y;x) +
Mp

(p+ 1)!
‖y − x‖p+1 +

M

(q + 1)!
‖y − x‖q+1,

sM i
q
(y;x)

def
= TFi

q (y;x) +
M i

q

(q + 1)!
‖y − x‖q+1,

where Mp, M and M i
q, for i = 1 : m, are positive constants. The MTA algorithm is defined

below. Note that if Fi’s, for i = 0 : m, are convex functions, then the subproblem (4.4) is also

Algorithm 3 MTA: Moving Taylor approximation
Given x0 ∈ F and Mp,M,M i

q > 0, for i = 1 : m, and k = 0.
while stopping criteria do

compute xk+1 a stationary point of the subproblem:

min
x∈E

sMMp
(x;xk) + h(x) (4.4)

s.t. : sM i
q
(x;xk) ≤ 0, i = 1 : m,

satisfying the following descent:

sMMp
(xk+1;xk) + h(xk+1) ≤ sMMp

(xk;xk) + h(xk) (:= F (xk)). (4.5)

update k = k + 1.
end while

convex. Indeed, if Mp ≥ pLp and M i
q ≥ qLi

q for i = 1 : m, then the Taylor approximations
sMMp

(·;xk) and sM i
q
(·;xk) for i = 1 : m are (uniformly) convex functions (see Theorem 2 in [12]).

Hence, in the convex case, we assume that xk+1 is the global optimum of the subproblem (4.4).
However, in the nonconvex case, we cannot always guarantee the convexity of the subproblem
(4.4). In this case, we just assume that xk+1 is a stationary (KKT) point of the subproblem (4.4)
satisfying the descent (4.5). In Section 4.5 we show that one can still use the powerful tools from
convex optimization for solving subproblem (4.4) even in the nonconvex case. Note that our
novelty comes from using two regularization terms in the objective function of the subproblem
(4.4), i.e., Mp

(p+1)!‖x − xk‖
p+1 is to insure the convexity of the subproblem in the convex case

(provided that Mp ≥ pLp), while M
(q+1)!‖x − xk‖

q+1 is to ensure a descent for an appropriate
Lyapunov function (see Lemma 4.3.7) and a better convergence rate (see Remark 4). We denote
the feasible set of subproblem (4.4) by F(xk) := {y ∈ E : sM i

q
(y;xk) ≤ 0 ∀i = 1 : m}.

4.3 Nonconvex convergence analysis

In this section, we assume that the problem (4.1) is nonconvex, i.e., Fi’s, for i = 0 : m, are
nonconvex functions. Then, the subproblem (4.4) is also nonconvex. Consequently, we only
assume that xk+1 is a stationary (KKT) point of the subproblem (4.4) satisfying the descent
(4.5). Next, we show that the sequence (F (xk))k≥0 is strictly noninecreasing.

Lemma 4.3.1. Let Assumptions 4.2.1, 4.2.2, and 4.2.3 hold and (xk)k≥0 be generated by MTA
algorithm with Mp > Lp, x0 ∈ F and M i

q ≥ Li
q for all i = 1 : m. Then, we have:

(i) The sequence (F (xk))k≥0 is nonincreasing and satisfies the descent:

F (xk+1) ≤ F (xk)−
(
Mp−Lp

(p+ 1)!
‖xk+1 − xk‖p+1 +

M

(q +1)!
‖xk+1 − xk‖q+1

)
.
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(ii) The set F(xk) is nonempty, F(xk) ⊆ F for all k ≥ 0, and additionally the sequence
(xk)k≥0 is feasible for the original problem (4.1), bounded, and has a finite length:

∞∑
k=0

(
‖xk+1 − xk‖q+1 + ‖xk+1 − xk‖p+1

)
<∞.

Proof. (i) Writing inequality (4.5) explicitly, we have:

TF0
p (xk+1;xk) +

Mp

(p+ 1)!
‖xk+1−xk‖p+1 +

M

(q + 1)!
‖xk+1−xk‖q+1 + h(xk+1) ≤ F (xk).

On the other hand, from (4.2) we have:

− Lp

(p+ 1)!
‖xk+1 − xk‖p+1 + F0(xk+1) ≤ TF0

p (xk+1;xk),

which, combined with the previous inequality, yields:

Mp − Lp

(p+ 1)!
‖xk+1 − xk‖p+1 +

M

(q + 1)!
‖xk+1 − xk‖q+1 + F (xk+1) ≤ F (xk),

proving the first statement of the lemma.

(ii) Further, if M i
q ≥ Li

q and x0 ∈ F , then the subproblem (4.4) is well-defined, i.e., the feasible
set F(xk) 6= ∅ ∀ k ≥ 0. Additionally, F(xk) ⊆ F and thus xk is feasible for the original problem
(4.1) for all k ≥ 0. Indeed, note that F(x0) 6= ∅ since x0 ∈ F(x0) (recall that x0 ∈ F , hence we
have sM i

q
(x0;x0) = Fi(x0) ≤ 0 for all i = 1 : m). Now let us prove that x1 is feasible for problem

(4.1). Since M i
q ≥ Li

q, for all i = 1 : m, then from Assumption 4.2.1.2 and relation (4.3), we get:

Fi(y) ≤ TFi
q (y;x0) +

Li
q

(q + 1)!
‖y − x0‖q+1

= sLi
q
(y;x0) ≤ sM i

q
(y;x0) ≤ 0 ∀i = 1 : m, ∀y ∈ E.

Consequently, F(x0) ⊆ F . Additionally, given that x1 is feasible for the subproblem (4.4), i.e.,
x1 ∈ F(x0) or equivalently sM i

q
(x1;x0) ≤ 0 ∀i = 1 : m, we further get:

Fi(x1) ≤ sM i
q
(x1;x0) ≤ 0 ∀i = 1 : m.

Therefore, the iterate x1 is also feasible for the original problem (4.1). By induction, using the
same arguments as before, we can easily prove that F(xk) 6= ∅, F(xk) ⊆ F and thus xk is
feasible for the original problem (4.1) for all k ≥ 0. Further, since (F (xk))k≥0 is nonincreasing,
then xk ∈ A(x0) and hence from Assumption 4.2.2 the sequence (xk)k≥0 is bounded. Finally,
the last statement follows by summing up the descent inequality in function values from (i). ■

From the previous lemma, it follows that there exists D > 0 such that ‖xk‖ ≤ D for all
k ≥ 0. Therefore, the sequence (xk)k≥0 has limit points. In the sequel, we impose the following
assumption, which states that subproblem (4.4) admits KKT points.

Assumption 4.3.2. There exist multipliers uk+1 = (uk+1
1 , · · · , uk+1

m ) ≥ 0 and Λk+1 ∈ ∂h(xk+1)
such that the following KKT conditions hold for (4.4):

∇sMMp
(xk+1;xk) + Λk+1 +

m∑
i=1

uk+1
i ∇sM i

q
(xk+1;xk) = 0, (4.6)

uk+1
i sM i

q
(xk+1;xk) = 0, sM i

q
(xk+1;xk) ≤ 0 ∀i = 1 : m.
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Note that, in general, if the original problem (4.1) satisfies some constraint qualifications (e.g.,
MFCQ) on F , then the corresponding subproblem (4.4) may satisfy some constraint qualifica-
tions as well, which however are not necessarily of the same type as that of the original problem.
For example, if the original problem satisfies MFCQ and the subproblem (4.4) is convex, then
the Slater condition holds for the subproblem and consequently, Assumption 4.3.2 is valid at
xk+1. Indeed, let us prove that the Slater condition holds under MFCQ (Assumption 4.2.3),
i.e., for any x ∈ F fixed, there exists a ζ ∈ E such that the inequality constraints in (4.4) hold
strictly for all i = 1 : m, i.e.:

Fi(x) + 〈∇Fi(x), ζ − x〉+
q∑

j=2

1

j!
∇jFi(x)[ζ − x]j +

M i
q

(q + 1)!
‖ζ − x‖q+1 < 0.

Using a similar argument as in [24], we show that a point of the form ζ = x + td, with t ∈ R+

and d ∈ E such that ‖d‖ = 1, satisfies strictly these inequalities provided that t is sufficiently
small. Indeed, for all i 6∈ I(x) we have Fi(x) < 0 and thus:

Fi(x) + 〈∇Fi(x), ζ − x〉+
q∑

j=2

1

j!
∇jFi(x)[ζ − x]j +

M i
q

(q + 1)!
‖ζ − x‖q+1

= Fi(x) + t〈∇Fi(x), d〉+
q∑

j=2

tj
1

j!
∇jFi(x)[d]

j + tq+1
M i

q

(q + 1)!
‖d‖q+1

≤ Fi(x) + t‖∇Fi(x)‖+
q∑

j=2

tj
1

j!
‖∇jFi(x)‖+ tq+1

M i
q

(q + 1)!
< 0,

where the first inequality follows from Cauchy-Schwartz and the last inequality from Fi(x) < 0
and t is sufficiently small. If i ∈ I(x), then from Assumption 4.2.3 we have 〈∇Fi(x), d〉 < 0 for
some d and Fi(x) = 0. Hence, using a similar argument, we have:

Fi(x) + 〈∇Fi(x), ζ − x〉+
q∑

j=2

1

j!
∇jFi(x)[ζ − x]j +

M i
q

(q + 1)!
‖ζ − x‖q+1

= t〈∇Fi(x), d〉+
q∑

j=2

tj
1

j!
‖∇jFi(x)‖+ tq+1

M i
q

(q + 1)!
< 0,

provided that t is sufficiently small. This shows that the Taylor approximation inequality con-
straints in (4.4) have a nonempty interior, and thus the Slater condition holds for the subproblem
(4.4). However, if the subproblem (4.4) is nonconvex, we are not aware of any result guarantee-
ing the existence of Lagrange multipliers that together with xk+1 satisfy Assumption 4.3.2, even
if the original problem satisfies certain constraint qualifications. However, in our convergence
analysis below we have the flexibility to relax Assumption 4.3.2 by considering that xk+1 satisfies
together with some (uk+1

i )mi=1 ≥ 0 the following Complementary Approximate KKT (CA-KKT)
conditions (see also [50, 51, 92]):∥∥∥∥∥∇sMMp

(xk+1;xk) + Λk+1 +
m∑
i=1

uk+1
i ∇sM i

q
(xk+1;xk)

∥∥∥∥∥ ≤ η1‖xk+1 − xk‖min(p,q),

|uk+1
i sM i

q
(xk+1;xk)| ≤ η2‖xk+1− xk‖q+1,

(
sM i

q
(xk+1;xk)

)
+
≤ η3

(q+1)!
‖xk+1− xk‖q+1, (4.7)

for all i = 1 : m and for some η1, η2, η3 > 0, where (a)+ = max(0, a). Note that in [50]
(page 3) it has been shown that at every local minimizer of subproblem (4.4) there exist xk+1

and (uk+1
i )mi=1 ≥ 0 such that CA-KKT conditions (4.7) hold. Similar approximate optimality

conditions have been considered in [51, 92]. For simplicity of the exposition we assume below
that xk+1 satisfies KKT conditions from Assumption 4.3.2, although our convergence results
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can also be derived using the complementary approximate optimality KKT conditions, CA-
KKT, from above (in all the proofs, we sketch how our derivations remain valid when replacing
Assumption 4.3.2 with CA-KKT (4.7)). For example, if xk+1 satisfies (4.7), then xk+1 is feasible
for the original problem (4.1) provided that M i

q ≥ η3 + Li
q for all i = 1 : m. Indeed, from (2.4):

M i
q − Li

q

(q + 1)!
‖xk+1 − xk‖q+1 + Fi(xk+1) ≤ sM i

q
(xk+1;xk) ≤

(
sM i

q
(xk+1;xk)

)
+
,

for all i = 1 : m, this implies that:

Fi(xk+1) ≤
η3 + Li

q −M i
q

(q + 1)!
‖xk+1 − xk‖q+1 ≤ 0 ∀i = 1 : m.

Next, we show that the sequence of the multipliers (uk)k≥1 given in (4.6) is bounded.

Lemma 4.3.3. Let Assumptions 4.2.1, 4.2.2, 4.2.3 and 4.3.2 hold. Then, the multipliers (uk)k≥0

defined in (4.6) are bounded, i.e., there exists Cu > 0 such that:

‖uk‖ ≤ Cu ∀k ≥ 0.

Proof. We employ a similar line of reasoning to that used in [24, 25]. Assume, for the sake
of contradiction, that there exist ui ≥ 0 for i = 1 : m, x∞ ∈ F , a subsequence (uk)k∈K , and
(xk)k∈K , with K ⊆ N, as well as Λk+1 ∈ ∂h(xk+1), such that the following holds:

lim
k→∞,k∈K

m∑
i=1

uk+1
i = +∞, lim

k→∞,k∈K

uk+1
i∑m

i=1 u
k+1
i

= ui, with
m∑
i=1

ui = 1,

and additionally lim
k→∞,k∈K

xk+1 = x∞ and lim
k→∞,k∈K

Λk+1 = Λ ∈ ∂h(x∞) (note that ∂h(x) is
closed and bounded for all x ∈ domh since h is assumed to be locally Lipschitz, see Theorem
9.13 in [39]). Further, dividing the first and second equalities in (4.6) (i.e., Assumption (4.3.2))
with the quantity

∑m
i=1 u

k+1
i , we get:

1∑m
i=1 u

k+1
i

(
∇sMMp

(xk+1;xk) + Λk+1 +
m∑
i=1

uk+1
i ∇sM i

q
(xk+1;xk)

)
= 0,

uk+1
i∑m

i=1 u
k+1
i

(
sM i

q
(xk+1;xk)

)
= 0, sM i

q
(xk+1;xk) ≤ 0, for i = 1 : m.

Since the Taylor functions sMMp
and sM i

q
’s, for i = 1 : m, are continuous, then passing to the

limit as k →∞, k ∈ K, we obtain:
m∑
i=1

ui∇sM i
q
(x∞;x∞) = 0, uisM i

q
(x∞;x∞) = 0, sM i

q
(x∞;x∞) ≤ 0 for i = 1 : m.

Notice that similar relation can be obtained by substituting Assumption 4.3.2 with CA-KKT
(4.7), while also using the fact that ‖xk+1 − xk‖ → 0 as k approaches infinity. According to the
definition of sM i

q
, for i = 1 : m, it can be deduced that:

m∑
i=1

ui∇Fi(x∞) = 0, uiFi(x∞) = 0, Fi(x∞) ≤ 0 for i = 1 : m.

If I(x∞) = ∅ (see Assumption 4.2.3), then for all i = 1 : m, Fi(x∞) < 0 and hence ui = 0, for
i = 1 : m. This is a contradiction with

∑m
i=1 ui = 1. Further, assume that I(x∞) 6= ∅. Since
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we have
∑m

i=1 ui = 1, then there exists I ⊆ I(x∞), I 6= ∅, such that ui > 0 for all i ∈ I. From
Assumption 4.2.3, there exists d ∈ E such that:

0 =

〈
m∑
i=1

ui∇Fi(x∞), d

〉
=
∑
i∈I

ui〈∇Fi(x∞), d〉 < 0,

which is a contradiction with MFCQ assumption. Hence our statement follows. ■

4.3.1 Convergence rate to KKT points

In the general nonconvex case we want to see how fast we can satisfy (approximately) the KKT
optimality conditions for the problem (4.1). We consider points satisfying the first order local
necessary optimality conditions for problem (4.1), i.e., points which belong to S:

S = {x ∈ F : ∃ ui ≥ 0, Λ ∈ ∂h(x) s.t. : (4.8)

∇F0(x) + Λ +

m∑
i=1

ui∇Fi(x) = 0, uiFi(x) = 0, i = 1 : m

}
.

Hence, an appropriate measure of optimality is optimality and complementary violations of KKT
conditions. Therefore, for Λk+1 ∈ ∂h(xk+1) we define the map:

M(xk+1) = max
{∥∥∥∥∥∇F0(xk+1) + Λk+1 +

m∑
i=1

uk+1
i ∇Fi(xk+1)

∥∥∥∥∥ ,(
− uk+1

i Fi(xk+1)
) q

q+1
, i = 1 : m

}
.

Assume Mp > Lp and, for simplicity, let us introduce the following constants C1 =
Lp+Mp

p! ,

C2 =

(
Cu

∑m
i=1(M

i
q+Li

q)+M

q! +

(
Cu max

i=1:m

M i
q+Li

q

(q+1)!

) q
q+1

)
and

C = max
(
((q + 1)!)

q
q+1 (C1(2D)p−q + C2)

q+1
q (q + 1)!

M
q

q+1

,

((p+ 1)!)
p

p+1 (C1 + C2(2D)q−p)
p+1
p (p+ 1)!

(Mp − Lp)
p

p+1

)
.

Then, we have the following convergence rate for the measure of optimalityM(xk):

Theorem 4.3.4. Let the assumptions of Lemma 4.3.1 and, additionally, Assumption 4.3.2 hold.
Let (xk)k≥0 be generated by MTA algorithm. Then, there exists Λk+1 ∈ ∂h(xk+1) such that:

(i) The following bound hold:

M(xk+1) ≤ C1‖xk+1 − xk‖p + C2‖xk+1 − xk‖q.

(ii) The sequence (M(xk))k≥0 converges to 0 with the following sublinear rate:

min
j=1:k

M(xj) ≤
C(F (x0)− F∞)

k
min

(
q

q+1
, p
p+1

) .
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Proof. Since uk+1
i ≥ 0, then from (4.3) we get for all i = 1 : m:

− uk+1
i

Li
q

(q + 1)!
‖xk+1 − xk‖q+1 ≤ uk+1

i

(
Fi(xk+1)− TFi

q (xk+1;xk)
)

= uk+1
i Fi(xk+1)− uk+1

i

(
TFi
q (xk+1;xk) +

M i
q

(q + 1)!
‖xk+1 − xk‖q+1

)

+ uk+1
i

M i
q

(q + 1)!
‖xk+1 − xk‖q+1

= uk+1
i Fi(xk+1) + uk+1

i

M i
q

(q + 1)!
‖xk+1 − xk‖q+1,

where the last equality follows from (4.6) (i.e., Assumption (4.3.2)). Note that a similar relation
can be derived when replacing Assumption 4.3.2 with CA-KKT (4.7). Since the multipliers are
bounded, taking the maximum, we get:

max
i=1:m

{(
−uk+1

i Fi(xk+1)
) q

q+1

}
≤ max

i=1:m


(
uk+1
i

M i
q + Li

q

(q + 1)!

) q
q+1

‖xk+1 − xk‖q
 (4.9)

≤

(
Cu max

i=1:m

M i
q + Li

q

(q + 1)!

) q
q+1

‖xk+1 − xk‖q.

Further, let Λk+1 ∈ ∂h(xk+1), then we have:

∥∥∥∥∥∇F0(xk+1) + Λk+1 +

m∑
i=1

uk+1
i ∇Fi(xk+1)

∥∥∥∥∥
≤ ‖∇F0(xk+1)−∇TF0

p (xk+1;xk)‖+
∥∥∇TF0

p (xk+1;xk) + Λk+1

+
Mp

p!
‖xk+1 − xk‖p−1(xk+1 − xk) +

M

q!
‖xk+1 − xk‖q−1(xk+1 − xk)

+

m∑
i=1

uk+1
i

(
∇TFi

q (xk+1;xk) +
M i

q

q!
‖xk+1 − xk‖q−1(xk+1 − xk)

)∥∥∥∥∥
+

∥∥∥∥∥−Mp

p!
‖xk+1 − xk‖p−1(xk+1 − xk)−

∑m
i=1 u

k+1
i M i

q +M

q!
‖xk+1 − xk‖q−1(xk+1 − xk)

∥∥∥∥∥
+

∥∥∥∥∥
m∑
i=1

uk+1
i

(
∇Fi(xk+1)−∇TFi

q (xk+1;xk)
)∥∥∥∥∥

≤ Lp +Mp

p!
‖xk+1 − xk‖p + 0 +

∑m
i=1 u

k+1
i (M i

q + Li
q) +M

q!
‖xk+1 − xk‖q

≤ Lp +Mp

p!
‖xk+1 − xk‖p +

Cu
∑m

i=1(M
i
q + Li

q) +M

q!
‖xk+1 − xk‖q,

where the second inequality follows from (4.2), (4.3), and Assumption 4.3.2. Note that one can
replace zero from above, due to Assumption 4.3.2, with the right hand side in the approximate
optimality condition from CA-KKT (4.7) and the subsequent derivations still follow. The last
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inequality follows from Lemma 4.3.3. Combining this inequality with (4.9), we get:

M(xk+1) ≤
Lp +Mp

p!
‖xk+1 − xk‖p +

(
Cu
∑m

i=1(M
i
q + Li

q) +M

q!

+

(
Cu max

i=1:m

M i
q + Li

q

(q + 1)!

) q
q+1

 ‖xk+1 − xk‖q = C1‖xk+1 − xk‖p + C2‖xk+1 − xk‖q.

Hence, the first assertion follows. Further, if q ≤ p, then it follows that:

M(xk+1) ≤
(
C1‖xk+1 − xk‖p−q + C2

)
‖xk+1 − xk‖q.

Since we have ‖xk+1 − xk‖ ≤ 2D (see Lemma 4.3.1), then:

M(xk+1) ≤
(
C1(2D)p−q + C2

)
‖xk+1 − xk‖q.

Combining this inequality with the descent (4.5), we get:

M(xk+1)
q+1
q ≤ (C1(2D)p−q + C2)

q+1
q (q + 1)!

M

(
F (xk)− F (xk+1)

)
.

Summing up this inequality and taking the minimum, we obtain:

min
j=1:k

M(xj) ≤
((q + 1)!)

q
q+1 (C1(2D)p−q + C2)(F (x0)− F∞)

M
q

q+1k
q

q+1

. (4.10)

On the other hand, if p ≤ q, then we also have:

M(xk) ≤
(
C1 + C2‖xk+1 − xk‖q−p

)
‖xk+1 − xk‖p

≤
(
C1 + C2(2D)q−p

)
‖xk+1 − xk‖p.

Combining this inequality with the descent (4.5), we get:

M(xk+1)
p+1
p ≤ (C1 + C2(2D)q−p)

p+1
p (p+ 1)!

Mp − Lp
(F (xk)− F (xk+1)) .

Summing up this inequality and taking the minimum, we obtain:

min
j=1:k

M(xj) ≤
((p+ 1)!)

p
p+1 (C1 + C2(2D)q−p)(F (x0)− F∞)

(Mp − Lp)
p

p+1k
p

p+1

. (4.11)

Hence, combining inequalities (4.10) and (4.11), our assertion follows. ■

Remark 4. Theorem 4.3.4, shows that there exist a subsequence of the sequence (xk)k≥0, gen-
erated by MTA algorithm, which converges to a KKT point of the original problem (4.1). If
p = q, then the convergence rate is of order O(k−

p
p+1 ), which is the usual convergence rate for

higher-order algorithms for (unconstrained) nonconvex problems [92, 20, 97, 93]. If M = 0 (in
this case (4.10) is replaced with an inequality similar to the one in (4.11)), then the convergence

rate in the minimum of the optimality map M(xk) is of order O
(
k
−min

(
q

p+1
, p
p+1

))
. Thus, if

q ≤ p we have q
p+1 ≤

p
p+1 , and hence the convergence rate becomes O

(
k
− q

p+1

)
, which is worse

than the rate O
(
k
− q

q+1

)
. For a better understanding of this situation, consider a particular

case: p = 2 and q = 1. Then, for M = 0, the rate is O(k− 1
3 ), while for M > 0 the rate is
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O(k−
1
2 ). In conclusion, it is beneficial to have additionally the regularization of order q + 1 in

the objective function since it leads to faster convergence rates.

4.3.2 Better convergence under KL

In this section, we derive convergence rates for our algorithm under the KL property. To this
end, consider the following Lagrangian function for the problem (4.1) and for the subproblem
given in (4.4):

Lp(x;u) = F (x) +

m∑
i=1

uiFi(x), Lsp(y;x;u) = sMMp
(y;x) + h(x) +

m∑
i=1

uisM i
q
(y;x).

Next, we establish the following results, known as descent-ascent [98]:

Lemma 4.3.5. Let the assumptions of Theorem 4.3.4 hold and assume that M i
q > Li

q for
i = 1 : m. Then, we have:

Lp(xk+1;u
k+1)− Lp(xk;uk) ≤ −

(Mp − Lp)

(p+ 1)!
‖xk+1 − xk‖p+1 (4.12)

−

(
M +

∑m
i=1 u

k+1
i (M i

q − Li
q)

(q + 1)!

)
‖xk+1 − xk‖q+1 +

Cu‖Mq + Lq‖
(q + 1)!

‖xk − xk−1‖q+1.

Proof. We have:

Mp − Lp

(p+ 1)!
‖xk+1 − xk‖p+1 +

M

(q + 1)!
‖xk+1 − xk‖q+1 ≤ F (xk)− F (xk+1)

= F (xk)− F (xk+1)−
m∑
i=1

uk+1
i sM i

q
(xk+1;xk)

≤ F (xk)− F (xk+1)−
m∑
i=1

uk+1
i

(
Fi(xk+1) +

M i
q−Li

q

(q + 1)!
‖xk+1 − xk‖q+1

)

= Lp(xk;uk+1)−Lp(xk+1;u
k+1)−

m∑
i=1

uk+1
i Fi(xk)−

m∑
i=1

uk+1
i

(
M i

q−Li
q

(q+1)!
‖xk+1−xk‖q+1

)
,

where the first inequality follows from Lemma 4.3.1 (i), the first equality follows from the
KKT conditions (4.6) (i.e., Assumption 4.3.2), the second inequality follows from (2.4) and
uki ≥ 0. The last equality follows from the definition of Lp. Note that a similar relation can
be derived if we replace Assumption 4.3.2 with the approximate complementary condition from
(4.7), provided that M ≥ η2. Furthermore, we have:

Lp(xk;uk+1)− Lp(xk+1;u
k+1)−

m∑
i=1

uk+1
i Fi(xk)

= Lp(xk;uk)− Lp(xk+1;u
k+1) + Lp(xk;uk+1)− Lp(xk;uk)−

m∑
i=1

uk+1
i Fi(xk)

= Lp(xk;uk)− Lp(xk+1;u
k+1) +

m∑
i=1

uk+1
i Fi(xk)−

m∑
i=1

uki Fi(xk)−
m∑
i=1

uk+1
i Fi(xk)

= Lp(xk;uk)− Lp(xk+1;u
k+1)−

m∑
i=1

uki Fi(xk),
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where the second equality follows from the definition of the Lagrangian function Lp. On the
other hand, from (2.4) and uki ≥ 0, i = 1 : m, we have:

−
m∑
i=1

uki Fi(xk) ≤ −
m∑
i=1

uki sM i
q
(xk;xk−1) +

∑m
i=1 u

k
i (M

i
q + Li

q)

(q + 1)!
‖xk − xk−1‖q+1

= 0 +

∑m
i=1 u

k
i (M

i
q + Li

q)

(q + 1)!
‖xk − xk−1‖q+1 ≤ Cu‖Mq + Lq‖

(q + 1)!
‖xk − xk−1‖q+1.

Hence, our statement follows by combining these three inequalities. ■

Consider the following Lyapunov function:

ξp(x;u; z) := Lp(x;u) +
θ1

(p+ 1)!
‖x− z‖p+1 +

θ2
(q + 1)!

‖x− z‖q+1,

where θ1, θ2 are positive constants that will be defined later. The following lemma derives a
relation between the critical points of the functions ξp and Lp.

Lemma 4.3.6. For any x, y ∈ E and u ∈ Rm, it holds that:

(x, u, z) ∈ crit ξp ⇒ (x, u) ∈ crit Lp and ξp(x;u; z) = Lp(x;u).

Proof. If 0 ∈ ∂ξp(x;u; z) =
(
∂xξp(x;u; z),∇uξp(x;u; z),∇zξp(x;u; z)

)
, then:

0 ∈ ∂xξp(x;u; z) = ∂xLp(x;u) +
(
θ1
p!
‖x− z‖p−1 +

θ2
q!
‖x− z‖q−1

)
(x− z),

0 = ∇uξp(x;u; z) = ∇uLp(x;u),

0 = ∇zξp(x;u; z) =

(
θ1
p!
‖x− z‖p−1 +

θ2
q!
‖x− z‖q−1

)
(z − x).

Hence, from the last equality we get that z = x. This implies that 0 ∈ ∂Lp(x;u) and ξp(x;u; z) =
Lp(x;u), which proves our assertion. ■

Up to this stage, we have not considered any assumption on the constantM given in subproblem
(4.4). Hence, by restricting the choice of this constant, we can derive the following descent in
the Lyapunov function ξp.

Lemma 4.3.7. Let the assumptions of Theorem 4.3.4 hold and assume that θ1 =
Mp−Lp

2 ,
θ2 = 2Cu‖Mq + Lq‖ and M = 3Cu‖Mq + Lq‖. Then, we have:

ξp(xk+1;u
k+1;xk)− ξp(xk;uk;xk−1) ≤−

(Mp−Lp)

2(p+1)!

(
‖xk+1−xk‖p+1+‖xk−xk−1‖p+1

)
−
(
Cu‖Mq + Lq‖

(q + 1)!

)(
‖xk+1− xk‖q+1 + ‖xk− xk−1‖q+1

)
.

65



Chapter 4. Moving higher-order Taylor approximations algorithm for functional constraints
minimization

Proof. We have:

ξp(xk+1;u
k+1;xk)− ξp(xk;uk;xk−1)

= Lp(xk+1;u
k+1) +

θ1
(p+ 1)!

‖xk+1 − xk‖p+1 +
θ2

(q + 1)!
‖xk+1 − xk‖q+1

− Lp(xk;uk)−
θ1

(p+ 1)!
‖xk−xk−1‖p+1 − θ2

(q + 1)!
‖xk−xk−1‖q+1

(4.12)
≤ −(Mp − Lp)− θ1

(p+ 1)!
‖xk+1 − xk‖p+1 − θ1

(p+ 1)!
‖xk − xk−1‖p+1

−

(
M+

∑m
i=1 u

k+1
i (M i

q−Li
q)−θ2

(q + 1)!

)
‖xk+1−xk‖q+1−

(
θ2−Cu‖Mq+Lq‖

(q + 1)!

)
‖xk−xk−1‖q+1.

Then, it follows that:

ξp(xk+1;u
k+1;xk)− ξp(xk;uk;xk−1) ≤ −

(Mp − Lp)

2(p+ 1)!
‖xk+1 − xk‖p+1

−

(
Cu‖Mq + Lq‖+

∑m
i=1 u

k+1
i (M i

q − Li
q)

(q + 1)!

)
‖xk+1 − xk‖q+1

−
(
Cu‖Mq + Lq‖

(q + 1)!

)
‖xk − xk−1‖q+1 − (Mp − Lp)

2(p+ 1)!
‖xk − xk−1‖p+1.

Hence, our statement follows. ■

Remark 5. The main difficulty in getting the descent in the Lagrangian function Lp(x;u) is
the extra positive term that depends on the multipliers (see Theorem 4.3.5). We overcome
this challenge by introducing a new Lyapunov function ξp for which we can establish the strict
descent.

Define the following constants β1 =
(
C1 +

Mp−Lp

2p!

)
and β2 =

(
C2 +

2D∥Mq+Lq∥
(q+1)!

)
. Next, we

establish a bound on the (sub)gradient of the Lyapunov function ξp:

Lemma 4.3.8. Let the assumptions of Lemma 4.3.7 hold. Then, there exists Gk+1 ∈
∂ξp(xk+1;u

k+1;xk) such that we have the following bound:

‖Gk+1‖ ≤ β1‖xk+1 − xk‖p + β2‖xk+1 − xk‖q.

Proof. We have:

∇zξp(xk+1;u
k+1; z)z=xk

=
Mp − Lp

2p!
‖xk+1 − xk‖p−1(xk+1 − xk)

+
2Cu‖Mq + Lq‖

q!
‖xk+1 − xk‖q−1(xk+1 − xk).

Then, it follows that:

‖∇zξp(xk+1;u
k+1; z)z=xk

‖ ≤ Mp − Lp

2p!
‖xk+1 − xk‖p +

Cu‖Mq + Lq‖
q!

‖xk+1 − xk‖q.
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Further, for Λk+1 ∈ ∂h(xk+1) given in Theorem 4.3.4, we have:

∇F (xk+1) + Λk+1 +

m∑
i=1

uk+1
i ∇Fi(xk+1) ∈ ∂xξp(x;uk+1;xk)x=xk+1∥∥∥∥∥∇F (xk+1) + Λk+1 +

m∑
i=1

uk+1
i ∇Fi(xk+1)

∥∥∥∥∥ ≤M(xk+1),

where the last inequality follows from definition ofM(xk+1). From (4.3) we have:

Fi(xk+1) ≤ sM i
q
(xk+1;xk) +

M i
q + Li

q

(q + 1)!
‖xk+1 − xk‖q+1 ≤

M i
q + Li

q

(q + 1)!
‖xk+1 − xk‖q+1,

where the last inequality follows from sM i
q
(xk+1;xk) ≤ 0 given in Assumption 4.3.2 (a similar

result will follow if we replace this feasibility condition with the approximate feasibility from
CA-KKT (4.7)). Finally, we get:

‖∇uξp(xk+1;u;xk)u=uk+1‖ = ‖ (F1(xk+1), · · · , Fm(xk+1)) ‖

≤ ‖Lq +Mq‖
(q + 1)!

‖xk+1 − xk‖q+1 ≤ 2D‖Lq +Mq‖
(q + 1)!

‖xk+1 − xk‖q.

Denote Gk+1 =
(
∇F (xk+1) + Λk+1 +

∑m
i=1 u

k+1
i Fi(xk+1);∇uξp(xk+1;u

k+1;xk) ;

∇zξp(xk+1;u
k+1; z)z=xk

)
. Then, combining the last three inequalities, we get:

‖Gk+1‖ ≤
Mp − Lp

2p!
‖xk+1 − xk‖p +

Cu‖Mq + Lq‖
q!

‖xk+1 − xk‖q

+M(xk+1) +
2D‖Mq + Lq‖

(q + 1)!
‖xk+1 − xk‖q

≤
(
C1 +

Mp − Lp

2p!

)
‖xk+1 − xk‖p +

(
C2 +

2D‖Mq + Lq‖
(q + 1)!

)
‖xk+1 − xk‖q,

where the last inequality follows from Theorem 4.3.4. This proves our assertions. ■

From Lemma 4.3.7, we have that
(
ξp(xk, u

k, xk−1)
)
k≥1

is monotonically nonincreasing. Since ξp
is continuous, then it is bounded from below, and hence

(
ξp(xk, u

k, xk−1)
)
k≥1

convergences, let
us say to ξ∗p . For simplicity, we assume that p ≤ q and denote Sk := ξp(xk;u

k;xk−1)− ξ∗p . Next,
we establish global convergence.

Theorem 4.3.9. Let the assumptions of Lemma 4.3.7 hold, and let (xk)k≥0 be generated by
MTA algorithm. Then, the following holds:

1. If ξp satisfies the KL property at (x∗, u∗, x∗), where u∗ is a limit point of the bounded
sequence (uk)k≥1, and x∗ is a limit point of (xk)k≥0, then the hull sequence (xk)k≥0

converges to x∗ and there exists k1 ≥ 1 such that:

‖xk − x∗‖ ≤ ρmax
(
κ(Sk), S

1
p+1

k

)
∀k ≥ k1.

2. Moreover, if ξp satisfies KL with κ(s) = s1−ν , where ν ∈ [0, 1), then the following conver-
gence rates hold:

i. If ν = 0, then xk converges to x∗ in a finite number of iterations.
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ii. If ν ∈
(
0, p

p+1

]
, then we have the following linear rate:

‖xk − x∗‖ ≤ ρ

(
Γ

p

ν(p+1)2

(1 + Γ
p

ν(p+1) )
1

p+1

)k−(1+k1)

S
1

p+1

0 ∀k > k1.

iii. If ν ∈
(

p
p+1 , 1

)
, then there exists α > 0 such that the following sublinear rate holds:

‖xk − x∗‖ ≤
ρα1−ν

(k − k1)
p(1−ν)

ν(p+1)−p

∀k > k1.

Proof. For simplicity, denote ξkp = ξp(xk;u
k;xk−1) and consider p ≤ q (the case where q ≤ p is

similar). From Lemma 4.3.7, we have:

‖xk+1 − xk‖p+1 ≤ 2(p+ 1)!

Mp − Lp
(ξkp − ξk+1

p ) =
2(p+ 1)!

Mp − Lp
(Sk − Sk+1). (4.13)

Further, since ξp satisfies the inequality (2.16), then there exists an integer k1 and Gk ∈
∂ξp(xk;u

k;xk−1) such that for all k ≥ k1 we have:

‖xk+1 − xk‖p+1 ≤ ‖xk+1 − xk‖p+1κ
′
(Sk)‖Gk‖

≤ 2(p+ 1)!

Mp − Lp
κ

′
(Sk)(Sk − Sk+1)‖Gk‖ ≤

2(p+ 1)!

Mp − Lp
(κ(Sk)− κ(Sk+1))‖Gk‖

≤ 2(p+ 1)!

Mp − Lp
(κ (Sk)− κ (Sk+1)) (β1 + β2D

q−p)‖xk − xk−1‖p

=
2(β1 + β2D

q−p)(p+ 1)!

Mp − Lp
(κ(Sk)− κ(Sk+1))‖xk − xk−1‖p,

where the second inequality follows from (4.13), the third inequality follows from κ is concave,
and the last inequality follows from Lemma 4.3.8. For simplicity, let’s define T = 2(β1+β2Dq−p)·p!

Mp−Lp
.

We can then derive the following:

‖xk+1 − xk‖ ≤
(
T (p+ 1)

(
κ(Sk)− κ(Sk+1)

)) 1
p+1 ‖xk − xk−1‖

p
p+1

≤ T (p+ 1)

p+ 1

(
κ(Sk)− κ(Sk+1)

)
+

p

p+ 1
‖xk − xk−1‖

= T
(
κ(Sk)− κ(Sk+1)

)
+

p

p+ 1
‖xk − xk−1‖,

where in the second inequality we use the following classical result: if a, b are positive constants
and 0 ≤ α1, α2 ≤ 1, such that α1 + α2 = 1, then aα1bα2 ≤ α1a + α2b. Summing up the above
inequality over k ≥ k1, we get:∑

k≥k1

‖xk+1 − xk‖ ≤ (p+ 1)Tκ(Sk1) + p‖xk1 − xk1−1‖.

Hence, it follows that (xk)k≥0 is a Cauchy sequence and thus converges to x∗. Further:

‖xk − x∗‖ ≤
∑
t≥k

‖xt+1 − xt‖ ≤ (p+ 1)Tκ(Sk) + p‖xk − xk−1‖

≤ (p+ 1)Tκ(Sk) + p

(
2(p+ 1)!

Mp − Lp

) 1
p+1

S
1

p+1

k−1 ≤ ρmax
(
κ(Sk), S

1
p+1

k−1

)
,
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where the third inequality follows from (4.13) and Sk ≥ 0. The last inequality is straightforward

by introducing ρ = 2max
(
(p+ 1)T, p

(
2(p+1)!
Mp−Lp

) 1
p+1

)
. Thus, we have:

‖xk − x∗‖ ≤ ρmax
(
κ(Sk), S

1
p+1

k−1

)
. (4.14)

Let us assume now that κ(s) = s1−ν , where ν ∈ [0, 1). Then, it follows that:

‖xk − x∗‖ ≤ ρmax
(
S1−ν
k , S

1
p+1

k−1

)
. (4.15)

Further, from the KL property (2.16) and Lemma 4.3.8, we have:

Sν
k ≤ (1− ν)‖Gk‖ ≤ (β1 + β2D

q−p)‖xk − xk−1‖p.

Hence, combining this inequality with inequality (4.13), we further get:

Sν
k ≤ (β1 + β2D

q−p)

(
2(p+ 1)!

Mp − Lp
(Sk−1 − Sk)

) p
p+1

.

Denote Γ = (β1 +B2D
q−p)

p+1
p 2(p+1)!

Mp−Lp
, then we have the following recurrence:

S
ν(p+1)

p

k ≤ Γ(Sk−1 − Sk). (4.16)

1. Let ν = 0. If Sk > 0 for all k ≥ k1, then 1
Γ ≤ Sk−1−Sk. Letting k →∞ we get 0 < 1

Γ ≤ 0
which is a contradiction. Hence, there exist k > k1 such that Sk = 0 and finally Sk → 0
in a finite number of steps and from (4.15), xk → x∗ in a finite number of iterations.

2. Let ν ∈ (0, p
p+1 ], then

ν(p+1)
p ≤ 1 and 1− ν ≥ 1

p+1 . Using Lemma 2.4.2, for θ = ν(p+1)
p , we

further obtain:

Sk ≤

(
Γ

p
ν(p+1)

1 + Γ
p

ν(p+1)

)k−k1

S0.

Since Sk < 1 for all k > k1 and Sk is nonincreasing, then we have max
(
S1−ν
k , S

1
p+1

k−1

)
=

S
1

p+1

k−1 and thus:

‖xk − x∗‖ ≤ ρ

(
Γ

p

ν(p+1)2

(1 + Γ
p

ν(p+1) )
1

p+1

)k−(1+k1)

S
1

p+1

0 .

3. Let p
p+1 < ν < 1, then ν(p+1)

p > 1 and thus using Lemma 2.4.2 for θ = ν(p+1)
p , there exists

α > 0 such that:

Sk ≤
α

(k − k1)
p

ν(p+1)−p

.

In this case, we have max
(
S1−ν
k , S

1
p+1

k−1

)
= S1−ν

k−1 and thus we have:

‖xk − x∗‖ ≤
ρα1−ν

(k − k1)
p(1−ν)

ν(p+1)−p

.
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Hence, our assertions follow. ■

Remark 6. In this section, we derived global convergence rates using higher-order information for
solving nonconvex problems with functional constraints provided that the Lyapunov ξp satisfies
the KL property. Note that if F and Fi’s, for i = 1 : m, satisfy the KL property, then ξp also
satisfies the KL property. For p = q = 1, we recover the convergence results from [25, 89].

4.4 Convex convergence analysis

In this section we assume that the functions Fi’s, for i = 0 : m, are convex functions. Then,
the subproblem (4.4) is also convex and xk+1 is a corresponding minimum point for sufficiently
large Mp,M

i
q for i = 1 : m. Note that since the Lagrangian function (see section 4.3.2):

x 7→ Lsp(y;x;u),

is convex (provided thatMp ≥ pLp andM i
q ≥ qLi

q for i = 1 : m, see [12]), then from the optimal-
ity condition of xk+1 it follows that xk+1 is the global minimizer of the function Lsp(y;xk;uk+1).
Let introduce the following constants D1 =

Mp+Lp

(p+1)! and D2 =
(
M+

∑m
i=1 Cu(M i

q+Li
q)

(q+1)!

)
, then we

have the following sublinear convergence rate:

Theorem 4.4.1. Let the assumptions of Lemma 4.3.1 hold, and, additionally, Fi’s, for i = 0 : m,
be convex functions. Let also (xk)k≥k be generated by MTA algorithm with Mp ≥ pLp and
M i

q ≥ qLi
q for i = 1 : m. Then, we have the following sublinear convergence rate:

F (xk)− F ∗ ≤
2max

(
(p+1)p+1, (q+1)q+1

)(
D1(2D)p+1 +D2(2D)q+1

)
kmin(p,q) ∀k ≥ 1.

Proof. If the subproblem (4.4) is convex, then we proved on page 8 that the Slater’s condition
holds for this subproblem and consequently Assumption 4.3.2 is valid. Then, we have:

F (xk+1)
(4.2),(4.6)
≤ TF0

p (xk+1;xk) +
Mp

(p+ 1)!
‖xk+1 − xk‖p+1 +

M

(q + 1)!
‖xk+1 − xk‖q+1

+ h(x) +
m∑
i=1

uk+1
i

(
TFi
q (xk+1;xk) +

M i
q

(q + 1)!
‖xk+1 − xk‖q+1

)

= min
x
TF0
p (x;xk) +

Mp

(p+ 1)!
‖x− xk‖p+1 +

M

(q + 1)!
‖x− xk‖q+1

+ h(x) +
m∑
i=1

uk+1
i

(
TFi
q (x;xk) +

M i
q

(q + 1)!
‖x− xk‖q+1

)
(4.2)
≤ min

x
F (x) +

Mp + Lp

(p+ 1)!
‖x− xk‖p+1 +

M

(q + 1)!
‖x− xk‖q+1

+

m∑
i=1

uk+1
i

(
Fi(x) +

(M i
q + Li

q)

(q + 1)!
‖x− xk‖q+1

)

≤ min
α∈[0,1]

αF ∗ + (1− α)F (xk) + αp+1Mp + Lp

(p+ 1)!
‖xk − x∗‖p+1

+
αq+1M

(q + 1)!
‖xk − x∗‖q+1 +

m∑
i=1

uk+1
i

(
αFi(x

∗) + (1− α)Fi(xk)
)

70



Chapter 4. Moving higher-order Taylor approximations algorithm for functional constraints
minimization

+ αq+1
uk+1
i (M i

q + Li
q)

(q + 1)!
‖xk − x∗‖q+1

≤ min
α∈[0,1]

αF ∗ + (1− α)F (xk) + αp+1Mp + Lp

(p+ 1)!
‖xk − x∗‖p+1

+
αq+1M

(q + 1)!
‖xk − x∗‖q+1 +

m∑
i=1

αq+1
uk+1
i (M i

q + Li
q)

(q + 1)!
‖xk − x∗‖q+1,

where the first equality follows from xk+1 being the global minimum of the Lagrangian function
Lsp(y;xk;uk+1), the last inequality follows from the fact that xk and x∗ are feasible for the
problem (4.1). Since the multipliers are bounded, we get:

F (xk+1) ≤ min
α∈[0,1]

αF ∗ + (1− α)F (xk) + αp+1Mp + Lp

(p+ 1)!
‖xk − x∗‖p+1

+ αq+1

(
M +

∑m
i=1Cu(M

i
q + Li

q)

(q + 1)!

)
‖xk − x∗‖q+1.

Hence, we get the following relation:

F (xk+1) ≤ min
α∈[0,1]

αF ∗+(1−α)F (xk) + αp+1D1‖xk − x∗‖p+1 + αq+1D2‖xk − x∗‖q+1, (4.17)

which implies that:

F (xk+1) ≤ min
α∈[0,1]

αF ∗ + (1−α)F (xk) + αp+1D1(2D)p+1 + αq+1D2(2D)q+1. (4.18)

If q ≤ p, then from inequality (4.18), we get:

F (xk+1) ≤ min
α∈[0,1]

αF ∗ + (1−α)F (xk) + αq+1
(
D1(2D)p+1 +D2(2D)q+1

)
.

Since the previous inequality holds for all α ∈ [0, 1], then we consider:

Ak := k(k + 1) · · · (k + p), ak+1 := Ak+1 −Ak, αk :=
ak+1

Ak+1
.

Therefor, we obtain:

F (xk+1) ≤
ak+1

Ak+1
F ∗ +

Ak

Ak+1
F (xk) +

(
ak+1

Ak+1

)q+1 (
D1(2D)p+1 +D2(2D)q+1

)
≤ ak+1

Ak+1
F ∗ +

Ak

Ak+1
F (xk) +

(
p+ 1

k + p+ 1

)q+1 (
D1(2D)p+1 +D2(2D)q+1

)
.

Multiplying both sides with Ak+1, we get:

Ak+1(F (xk+1)− F ∗) ≤ Ak(F (xk)− F ∗) +Ak+1

(
p+ 1

k + p+ 1

)q+1 (
D1(2D)p+1 +D2(2D)q+1

)
≤ Ak(F (xk)− F ∗) + (q + 1)q+1

(
D1(2D)p+1 +D2(2D)q+1

)
.

Summing up this inequality, we get for all k ≥ 1:

F (xk)− F ∗ ≤ 1

Ak
k(q + 1)q+1

(
D1(2D)p+1 +D2(2D)q+1

)
≤

(q + 1)q+1
(
D1(2D)p+1 +D2(2D)q+1

)
kq

.
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Further, if p ≤ q, then from inequality (4.18), we get:

F (xk+1) ≤ min
α∈[0,1]

αF ∗ + (1− α)F (xk) + αp+1
(
D1(2D)p+1 +D2(2D)q+1

)
.

Following the same procedure as before, we get:

F (xk)− F ∗ ≤
(p+ 1)p+1

(
D1(2D)p+1 +D2(2D)q+1

)
kp

.

Hence, our assertion follows. ■

Remark 7. To the best of our knowledge, this is the first convergence rate using higher-order
information for a convex problem with smooth functional constraints. Note that for p = 1 and
q = 1, we recover the convergence rate in [21]. If m = 0, we recover the convergence rate in [12].

4.4.1 Uniform convex convergence analysis

In this section, we derive (super)linear convergence in function value for the sequence (xk)k≥0

generated by MTA algorithm, provided that the objective function F is uniformly convex of
degree θ with constant σ and the constraints Fi’s are only convex functions. For simplicity,
let us introduce the following constants U = (D1(2D)p−q+D2)(q+1)!

σ and Ū = (D1+D2(2D)q−p)(p+1)!
σ ,

where D1 and D2 are defined in Section 4.4. Then, we can establish the following convergence
rate in function values:

Theorem 4.4.2. Let the assumptions of Theorem 4.4.1 hold. Additionally, assume that F is
uniformly convex of order θ with constant σ. Then, the following hold:
(i) If θ = min(p+ 1, q + 1), then:

F (xk+1)− F ∗ ≤ max
((

1− q

U
1
q (q+1)

1+ 1
q

)
,

(
1− p

Ū
1
p (p+1)

1+ 1
p

))
(F (xk)− F ∗).

(ii) If θ < min(p+ 1, q + 1), then:

F (xk+1)− F ∗ ≤max
(
(D1D

p−q +D2)θ
q+1
θ

σ
q+1
θ

,
(D1 +D2D

q−p)θ
p+1
θ

σ
p+1
θ

)
(F (xk)− F ∗)

min(p+1,q+1)
θ .

Proof. If q ≤ p, then, from inequality (4.17), we get:

F (xk+1) ≤ αF ∗ + (1− α)F (xk) + αq+1(D1(2D)p−q +D2)‖xk − x∗‖q+1.

Let Λ∗ ∈ h(x∗). Since F is uniformly convex, we get:

F (xk) ≥ F ∗ + 〈∇F0(x
∗) + Λ∗, xk − x∗〉+

σ

(q + 1)!
‖xk − x∗‖q+1

≥ F ∗ +
σ

(q + 1)!
‖xk − x∗‖q+1,

where the last inequality follows from the optimality condition of x∗: 〈∇F (x∗) + Λ∗, x− x∗〉 ≥
0, ∀x ∈ F and that the sequence (xk)k≥0 is feasible, i.e., xk ∈ F for all k ≥ 0. Combining the
last two inequalities, we get:

F (xk+1) ≤ min
α∈[0,1]

αF ∗ + (1−α)F (xk) + αq+1 (D1(2D)p−q+D2)(q+1)!

σ
(F (xk)−F ∗).
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Hence, it follows that:

F (xk+1)− F ∗ ≤ min
α∈[0,1]

(
1−α+αq+1 (D1(2D)p−q+D2)(q+1)!

σ

)
(F (xk)−F ∗).

By minimizing the right-hand side over α, the optimal choice is:

0 ≤ α =
1

(q + 1)
1
qU

1
q

≤ 1.

Replacing this choice in the last inequality, we get:

F (xk+1)− F ∗ ≤

(
1− 1

(q + 1)
1
qU

1
q

+
U

(q + 1)
q+1
q U

q+1
q

)
(F (xk)− F ∗)

≤

(
1− q

U
1
q (q + 1)

1+ 1
q

)
(F (xk)− F ∗).

Further, if p ≤ q, then we have:

F (xk+1) ≤ αkF
∗ + (1− αk)F (xk) + αp+1(D1 +D2(2D)q−p)‖xk − x∗‖p+1.

Since F is uniformly convex of degree p+ 1, we get:

F (xk) ≥ F ∗ +
σ

(p+ 1)!
‖xk − x∗‖p+1.

Combining the last two inequalities and following the same procedure as in the first case, we get
the following statement:

F (xk+1)− F ∗ ≤

(
1− p

Ū
1
p (p+ 1)

1+ 1
p

)
(F (xk)− F ∗).

Hence, our first assertion holds. Further, we have:

F (xk) ≥ F ∗ +
σ

θ
‖xk − x∗‖θ. (4.19)

Taking α = 1 in inequality (4.17) we get:

F (xk+1)− F ∗ ≤ D1‖xk − x∗‖p+1 +D2‖xk − x∗‖q+1.

Assume q ≤ p. Since the sequence (xk)k≥1 is bounded, then we further get:

F (xk+1)− F ∗ ≤ (D1D
p−q +D2)‖xk − x∗‖q+1.

Combining this inequality with (4.19), we get:

F (xk+1)− F ∗ ≤ (D1D
p−q +D2)θ

q+1
θ

σ
q+1
θ

(F (xk)− f∗)
q+1
θ .

If p ≤ q, then we also get:

F (xk+1)− F ∗ ≤ (D1 +D2D
q−p)θ

p+1
θ

σ
p+1
θ

(F (xk)− f∗)
p+1
θ ,

which proves the second statement of the theorem. ■
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Remark 8. In [22] the authors propose an algorithm, different from MTA, for solving problem
(4.1) based on lower approximations of the functions Fi, for i = 0 : m. Moreover, in [22] both
the objective and the constraints functions Fi’s are assumed uniformly convex. Under these
settings, [22] derives linear convergence in function values for their algorithm. Our result is
less conservative since we require only the objective function to be uniformly convex and the
functional constraints are assumed convex. Note also that if p = q = 1 and h = 0 we recover
the convergence rate in [24].

4.5 Efficient solution of subproblem for (non)convex problems

For the case where p = q = 1, it has been demonstrated that subproblem (4.4) can be efficiently
solved, as indicated in [24]. In this section, we will show that subproblem (4.4) can also be solved
efficiently when p = q = 2 or when p = 2 and q = 1, by utilizing efficient convex optimization
techniques. To achieve this, consider the scenario where p = q = 2 and h = 0. To compute xk+1

in subproblem (4.4), one needs to solve the following problem (here M0 =Mp +M):

min
x∈Rn

F0(xk) + 〈∇F0(xk), x− xk〉+
1

2

〈
∇2F0(xk)(x− xk), (x− xk)

〉
+
M0

6
‖x− xk‖3 (4.20)

s.t. : Fi(xk)+〈∇Fi(xk), x− xk〉+
1

2

〈
∇2Fi(xk)(x− xk), (x− xk)

〉
+
Mi

6
‖x− xk‖3 ≤ 0 i = 1:m.

Denote u = (u0, u1, · · · , um). Then, this problem is equivalent to:

min
x∈Rn

max
u∈Rm+1

+
u0=1

m∑
i=0

uiFi(xk) +

〈
m∑
i=0

ui∇Fi(xk), x− xk

〉

+
1

2

〈
m∑
i=0

ui∇2Fi(xk)(x− xk), (x− xk)

〉
+

∑m
i=0 uiMi

6
‖x− xk‖3.

Further, we get:

min
x∈Rn

max
u∈Rm+1

+
u0=1

m∑
i=0

uiFi(xk) +

〈
m∑
i=0

ui∇Fi(xk), x−xk

〉

+
1

2

〈
m∑
i=0

ui∇2Fi(xk)(x−xk), (x−xk)

〉
+max

w≥0

(
w

4
‖x−xk‖2 −

1

12(
∑m

i=0 uiMi)2
w3

)
.

For simplicity, we denote H(u,w) =
∑m

i=0 ui∇2Fi(xk) +
w
2 I, g(u) =

∑m
i=0 ui∇Fi(xk), l(u) =∑m

i=0 uiFi(xk) and M̃(u) =
∑m

i=0 uiMi. Then, the dual formulation of this problem:

min
x∈Rn

max
(u,w)∈Rm+2

+
u0=1

l(u) + 〈g(u), x− xk〉+
1

2
〈H(u,w)(x− xk), (x− xk)〉 −

w3

12(
∑m

i=0 uiMi)2
.

Consider the following notations:

θ(x, u) = l(u)+〈g(u), x−xk〉+
1

2

〈(
m∑
i=0

ui∇2Fi(xk)

)
(x−xk), x−xk

〉
+
M̃(u)

6
‖x−xk‖3,

β(u,w) = l(u)− 1

2

〈
H(u,w)−1g(u), g(u)

〉
− 1

12(M̃(u))2
w3,
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Fk =

{
(u0, u1, · · · , um, w) ∈ Rm+2

+ : u0 = 1 and
m∑
i=0

ui∇2Fi(xk) +
w

2
I � 0

}
.

Then, we have the following theorem:

Theorem 4.5.1. If there exists an Mi > 0, for some i = 0 : m, then we have the following
relation:

θ∗ := min
x∈Rn

max
u≥0

θ(x, u) = max
(u,w)∈Fk

β(u,w) = β∗.

Moreover, for any (u,w) ∈ Fk the direction x(u,w) = xk −H(u,w)−1g(u) satisfies:

0 ≤ θ(x(u,w), u)− β(u,w) = M̃(u)

12

(
w

M̃(u)
+ 2rk

)(
rk −

w

M̃(u)

)2

, (4.21)

where rk = ‖x(u,w)− xk‖.

Proof. First, we show that θ∗ ≥ β∗. Indeed, using a similar reasoning as in [10], we have:

θ∗ = min
x∈Rn

max
(u,w)∈Rm+2

+
u0=1

l(u) + 〈g(u), x− xk〉+
1

2
〈H(u,w)(x− xk), (x− xk)〉−

w3

12M̃(u)2

≥ max
(u,w)∈Rm+2

+
u0=1

min
x∈Rn

l(u) + 〈g(u), x− xk〉+
1

2
〈H(u,w)(x− xk), (x− xk)〉−

w3

12M̃(u)2

≥ max
(u,w)∈Fk

min
x∈Rn

l(u) + 〈g(u), x− xk〉+
1

2
〈H(u,w)(x− xk), (x− xk)〉 −

w3

12M̃(u)2

= max
(u,w)∈Fk

l(u)− 1

2

〈
H(u,w)−1g(u), g(u)

〉
− 1

12(
∑m

i=0 uiMi)2
w3 = β∗.

Let (u,w) ∈ Fk. Then, we have g(u) = −H(u,w)(x(u,w)− xk) and thus:

θ(x(u,w), u) = l(u) + 〈g(u), x(u,w)− xk〉+
M̃(u)

6
r3k

+
1

2

〈(
m∑
i=0

ui∇2Fi(xk)

)
(x(u,w)− xk), x(u,w)− xk

〉

= l(u)− 〈H(u,w)(x(u,w)− x), x(u,w)− x〉+ M̃(u)

6
r3k

+
1

2

〈(
m∑
i=0

ui∇2Fi(xk)

)
(x(u,w)− xk), x(u,w)− xk

〉

= l(u)− 1

2

〈(
m∑
i=0

ui∇2Fi(xk) +
w

2
I

)
(x(u,w)− xk), x(u,w)− xk

〉
−w

4
r2k +

M̃(u)

6
r3k

= β(u,w) +
1

12M̃(u)2
w3 − w

4
r2k +

M̃(u)

6
r3k

= β(u,w) +
M̃(u)

12

(
w

M̃(u)

)3

− M̃(u)

4

(
w

M̃(u)

)
r2k+

M̃(u)

6
r3k

= β(u,w) +
M̃(u)

12

(
w

M̃(u)
+ 2rk

)(
rk −

w

M̃(u)

)2

,
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which proves (4.21). Note that we have:

∇wβ(u,w) =
1

4
‖x(u,w)− xk‖2 −

1

4M̃(u)2
w2 =

1

4

(
rk +

w

M̃(u)

)(
rk −

w

M̃(u)

)
.

Therefore if β∗ is attained at some (u∗, w∗) > 0 from Fk, then we have ∇β(u∗, w∗) = 0. This
implies w∗

M̃(u∗)
= rk(u

∗, w∗) and by (4.21) we conclude that θ∗ = β∗. ■

Remark 9. Note that in nondegenerate situations the global minimum of nonconvex cubic prob-
lem over nonconvex cubic constraints (4.20) can be computed by:

xk+1 = xk −H(u,w)−1g(u),

where recall that H(u,w) =
∑m

i=0 ui∇2Fi(xk) +
w
2 I, g(u) =

∑m
i=0 ui∇Fi(xk) and l(u) =∑m

i=0 uiFi(xk), with (u,w) the solution of the following dual problem:

max
(u,w)∈Fk

l(u)− 1

2

〈
H(u,w)−1g(u), g(u)

〉
− 1

12(
∑m

i=0 uiMi)2
w3, (4.22)

i.e., a maximization of a concave function over a convex set Fk. Hence, if m is not too large,
this dual problem can be solved very efficiently by interior point methods [66].

Corollary 4.5.2. If there exist Mi > 0, then the set Fk is nonempty and convex. If the problem
(4.22) has solution, then strong duality holds for the subproblem (4.20).

In conclusion, MTA algorithm can be implementable for p = q = 2 even for nonconvex problems,
since we can effectively compute the global minimum xk+1 of subproblem (4.4) using the powerful
tools from convex optimization. Note that a similar analysis can be derived for p = 2 and q = 1.
Next, we show the efficiency of the MTA algorithm numerically and compare it with existing
methods from literature.

4.6 Experimental results

In this section we present numerical experiments illustrating the performance of MTA algorithm
and compare it with existing algorithms from the literature. We consider an optimization
problem that is based on the convex function x 7→ log

(
1 + exp(aT0 x)

)
having gradient Lipschitz

with constant ‖a0‖2 and hessian Lipschitz with constant 2‖a0‖3, and on the nonconvex function
x 7→ log

(
(cT x+e)2

2 + 1
)
having also gradient Lipschitz with constant 2‖c‖2 and hessian Lipschitz

with constant 4‖c‖3. These functions appear frequently in machine learning applications [99].
In order to make our problem nontrivial and highly nonconvex, we add quadratic regularizers,
i.e., we consider the problem:

min
x
F (x) = log

(
1 + exp(aT0 x)

)
+

1

2
xTQ0x+ cT0 x+ d0 (4.23)

s.t. : Fi(x) = log
(
(aTi x+ bi)

2

2
+ 1

)
+

1

2
xTQix+ cTi x+ di ≤ 0, i = 1 : m.

We generate the data ai, bi, Qi, ci, di, for i = 0 : m, randomly, where Qi’s are symmetric indefinite
matrices such that the problem is strictly feasible (this is ensured by the choice di < log

(
b2i
2

)
for

i = 1 : m). Hence, the problem (4.23) is nonconvex, i.e., both the objective and the constraints
are nonconvex functions. Our numerical simulation are performed as follows: for given problem
data and an initial feasible point x0 we compute an approximate F ∗ and x∗ solution of (4.23)
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using IPOPT [70]; then, we implement our algorithm MTA(2,1) (i.e., p = 2, q = 1), MTA(2,2)
(i.e., p = q = 2), with the regularization parameters chosen to satisfy Mp > Lp and M i

q > Li
q

for all i = 1 : m, and compare with SCP [100] and MBA algorithm proposed in [24]. Note that
MBA coincides with MTA for p = q = 1. The stopping criterion are: F (xk) − F ∗ ≤ 10−3 and
maxi=1:m(0, Fi(xk)) ≤ 10−3 and each subproblem is solved using IPOPT (i.e., for MTA(2,1) and
MTA(2,2) we use IPOPT to solve the corresponding dual subproblem (4.22) at each iteration).
The results are given in Table 4.1 for different choices of the problem dimension (n) and number
of constraints (m). In the table we report the cpu time and number of iterations for each
method. From our numerical simulations, one can observe that our MTA(2,1) performs better
than MBA and SCP methods, although the theoretical convergence rates are the same for all
three methods (see [24, 25]). Moreover, increasing p and q, e.g., algorithm MTA(2,2), leads to
even much better performance for our algorithm, i.e., MTA(2,2) is superior to MTA(2,1), MBA
and SCP, which is expected from our convergence theory. Figure 1 also shows that increasing the
approximation orders p and q is beneficial in our MTA algorithm, leading to better performance
than first order methods (e.g. MBA and SCP) or than MTA(2,1).
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Figure 4.1: Behaviour of residual function for MTA with q = 2, p = 1 and with q = p = 2, MBA
and SCP along iterations (left) and time in sec (right): n = 100,m = 10.

SCP MBA[24] (MTA(1,1)) MTA(2,1) MTA(2,2)
n m cpu iter cpu iter cpu iter cpu iter

10

10 16.3 565 9.2 230 5.5 131 1.3 20
20 24.5 458 9.8 149 4.2 64 2.5 23
50 81.5 401 52.5 184 30.9 118 8.5 18
100 428.7 818 145.6 246 55.2 90 25 19
500 1119 146 534.7 50 252.8 27 135.9 9
103 1.1·104 394 6.7·103 188 4.2·103 103 499.3 10

20

10 149.8 2477 40.7 700 25 243 13.5 84
20 396.5 4134 166.9 1253 69.1 494 25.3 122
50 544.5 1288 266.7 580 151.6 331 37.5 37
100 862.4 551 441 243 264.2 148 72.3 23
500 1.9·104 1078 104 454 5052 245 767.2 26

100

10 247 696 69.3 211 66 76 15.5 17
20 6159 1179 713.3 306 350 79 252 28
50 2.3·104 1460 5974 235 1026 25 711.3 18
100 5.6·104 5611 1.1 · 104 1138 2055 89 1252 40
500 1.2 · 105 1384 3·104 338 6325 67 2155 20

Table 4.1: Comparison between MTA with q = 2, p = 1 and with q = p = 2, MBA and SCP in
terms of iterations and cpu time (sec) for different values m and n.
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4.7 Conclusions

In this chapter, we have proposed a higher-order algorithm for solving composite problems with
smooth functional constraints, called MTA. Our method uses higher-order derivatives to build
a model that approximates the objective and the functional constraints. We have proven global
convergence guarantees in both nonconvex and convex cases. We have also shown that our
algorithm MTA is implementable and efficient in numerical simulations.
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5 Regularized higher-order Taylor
approximation methods for nonlinear
least-squares

In this chapter, we introduce a higher-order algorithm specifically designed to minimize com-
posite nonlinear least-squares problems. We establish global convergence guarantees for this

method when applied to composite problems with nonconvex and nonsmooth objective functions,
with improved convergence rates under the Kurdyka-Łojasiewicz (KL) property. Furthermore,
we extend the scope of our investigation to include the behavior and efficacy of our algorithm
in handling systems of nonlinear equations and optimization problems with nonlinear equality
constraints and derive convergence rates specific for each class of problems. We also provide an
efficient implementation of the proposed method.

The chapter is structured as follows: Section 5.1 provides a comprehensive literature review on
methods for nonlinear least-squares problems. In Section 5.2, we introduce our general composite
higher-order framework and the associated algorithm. We derive global and local convergence
results for this approach in both convex and nonconvex scenarios. Additionally, we present an
adaptive scheme that does not require prior knowledge of the Lipschitz constants. Section 5.4
presents an efficient implementation of the proposed algorithm. The chapter concludes with
applications of our algorithm to particular classes of nonlinear programming in Section 5.5. The
content presented in this chapter is derived from the paper [27].

5.1 State of the art

In the field of numerical analysis and optimization, solving nonlinear systems has long been
a fundamental aspect of various engineering and scientific applications. The task of finding a
solution x ∈ Rn to a nonlinear system of equations, typically represented as:

F (x) = 0, (5.1)

where F (x) = (F1(x), . . . , Fm(x)) with Fi’s being a differentiable functions, holds significant
importance for a wide range of real-world problems, from engineering design to data analysis.
One powerful method for tackling this problem when n = m is the Newton’s method. In this
method, the next iteration, xk+1, is calculated by solving the following linear system:

∇F (xk) · (xk+1 − xk) = −F (xk),

where xk is the current iteration. When the iteration xk is close to a non-degenerate root x∗,
i.e., F (x∗) = 0 and ∇F (x∗) has full rank, Newton’s method converges superlinearly, as noted
in Theorem 11.2 of [49]. However, if the initial guess is far from the root, this method may
not converge. Moreover, if the Jacobian ∇F (xk) is singular, the Newton step may not be well-
defined, potentially leading to undefined or unstable behavior. Further, the previous system of
equations can be formulated into the following optimization problem:

min
x∈Rn

1

2
‖F (x)‖2, (5.2)
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which we refers to as the quadratic least-squares problem. Among the established methods for
tackling this problem, the most well-known method is the Gauss-Newton algorithm [49, 101],
a popular scheme that leverages an iterative process to find solutions efficiently. Namely, the
iterations are of the form:

xk+1 = argmin
x

1

2
‖F (xk) +∇F (xk)(x− xk)‖2,

⇐⇒ ∇F (xk)T∇F (xk)(xk+1 − xk) = −∇F (xk)TF (xk).

While Newton’s method is designed to find zeros of a function, Gauss-Newton naturally suits
problems where we are minimizing the squared norm of the residuals. This structure makes it
inherently stable for these types of problems. However, like Newton’s method, Gauss-Newton
method can become unstable or fail to converge when dealing with ill-conditioned Jacobians.
The Levenberg-Marquardt method extends the Gauss-Newton method by introducing a regular-
ization term, providing greater stability and flexibility when faced with ill-conditioned Jacobians
or challenging convergence scenarios [102, 103, 104]. The iterations in the Levenberg-Marquardt
method are defined as follows:

xk+1 = argmin
x

1

2
‖F (xk) +∇F (xk)(x− xk)‖2 +

γ

2
‖x− xk‖2,

⇐⇒
(
∇F (xk)T∇F (xk) + γIn

)
(xk+1 − xk) = −∇F (xk)TF (xk),

where xk represents the current iteration, In is the identity matrix, and γ is a regularization
parameter. When γ = 0, the Levenberg-Marquardt method coincides with the Gauss-Newton
method. Unlike the Gauss-Newton method, the Levenberg-Marquardt method has a global
convergence rate to a stationary point of the objective ‖F (x)‖2, for more details, see Theorem
10.3 in [49]. Additionally, the Levenberg-Marquardt method has a similar local convergence
behavior to the Gauss-Newton method when the initial point is near the solution.

In [94], Nesterov proposed a novel approach to solve the systems of non-linear equations (5.1),
which bears a resemblance to the traditional Gauss-Newton method. The core concept is to
convert the original problem (5.1) into an optimization problem with a non-smooth merit func-
tion. One common choice for this transformation is to use the 2-norm, leading to the following
non-smooth nonlinear least-squares problem:

min
x∈Rn

‖F (x)‖. (5.3)

This approach differs from the smooth problem formulation in (5.2), as the optimization problem
in (5.3) is inherently non-smooth. However, if the system of equations is linear, the transfor-
mation defined in (5.2) effectively squares the condition number of the problem, which may
affect the convergence speed. Due to this drawback, in this chapter, we focus on a composite
problem with a non-smooth merit function. More precisely, we consider the following composite
optimization problem:

min
x∈Rn

f(x) := g(F (x)) + h(x), (5.4)

where F represents a real-vector function, defined as F = (F1, . . . , Fm). We assume that each
function Fi : Rn → R is p ≥ 1 times differentiable and has the pth derivative Lipschitz con-
tinuous, the function g : Rm → R is nonsmooth, convex, and Lipschitz continuous (e.g., g is
the 2-norm), and the function h : Rn → R̄ is proper, lower semicontinuous, and convex. Note
that we have dom f = domh. This formulation covers many problems from the nonlinear pro-
gramming literature and appears in many real-world applications such as control, statistical
estimation, grey-box minimization, machine learning, and phase retrieval [56, 33, 30, 49, 31].
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5.1.1 First-order methods

A natural approach for solving problem (5.4), is one that resembles the Gauss-Newton approach,
consists in linearizing the smooth part, F , and adding an appropriate quadratic regularization.
More precisely, to obtain the next iteration, one needs to solve the following subproblem for a
given current iteration xk:

xk+1 = argmin
x
g
(
F (xk) +∇F (xk)(x− xk)

)
+
L

2
‖x− xk‖2 + h(x).

This scheme, known as (proximal) Gauss-Newton method, has been well-studied in the literature
[105, 106, 94, 56, 35]. When analyzing convergence for nonconvex problems, which can also be
nonsmooth, a common informal proof strategy involves the following two steps [52, 107, 98]:

• (i) Sufficient decrease: Find a positive constant M1 > 0 such that

M1‖xk+1 − xk‖2 ≤ f(xk)− f(xk+1).

This condition ensures that the objective function decreases sufficiently as the iterations
progress.

• (ii) Subgradient lower bound: Find a positive constant M2 > 0 such that

dist(0, ∂f(xk+1)) ≤M2‖xk+1 − xk‖.

This step provides a lower bound on the distance between the zero vector and the subgra-
dient of f at xk+1, indicating the gap between successive iterations.

Thus, if ‖xk+1 − xk‖ → 0, then dist(0, ∂f(xk+1)) → 0, indicating that any limit point of the
sequence (xk)k≥0 is a critical point. However, if f is in the form of equation (5.4), condition
(ii) might be impossible to meet, as demonstrated in the following example taken from [56],
i.e., if g is nonsmooth, the quantity dist(0, ∂f(xk+1)) will typically not even tend to zero in the
limit, in spite of ‖xk+1 − xk‖ tending to zero. More specifically, let us consider the (proximal)
Gauss-Newton applied to

min
x
|x2 − 1|,

with an initialization satisfying x0 > 1. This will generate a decreasing sequence that converges
to 1 and thus ‖xk+1 − xk‖ → 0. However, for any xk > 1 we have f ′

(xk) = 2xk → 2. In order
to overcome this obstacle, the authors in [56] introduce an artificial sequence, (yk)k≥0, that is
close to the original sequence (xk)k≥0. This proximity is defined as follows:

‖yk+1 − xk‖ ≤M1‖xk+1 − xk‖,
dist(0, ∂f(yk+1)) ≤M2‖yk+1 − xk‖,

where M1 and M2 are positive constants. This construction aims to circumvent the limitations
associated with condition (ii) by ensuring that the artificial sequence (yk)k≥0 retains sufficient
proximity to the original sequence (xk)k≥0, while still allowing a measurable relationship with
the subgradient of f . Thus, under the Lipschitz continuity of the Jacobian, ∇F , the iterates
of (proximal) Gauss-Newton method converges to a near stationary point at a sublinear rate
of order O(k− 1

2 ) [56], while convergence rates under the Kurdyka-Lojasiewicz (KL) property
were recently derived in [65, 35]. Trust region based Gauss-Newton methods have been also
considered in [108] for solving problems of the form (5.4). The authors in [108] show that their
proposed algorithms take at most O(ϵ−2) function evaluations to reduce the size of a first-order
criticality measure below a given accuracy ϵ.
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5.1.2 Higher-order methods

To our knowledge, there are very few studies considering the utilization of higher-order deriva-
tives to address problems of the form (5.4) where the function g is both convex and Lipschitz
continuous. For example, in [109], the authors explore the scenario where g(·) = 1

2‖·‖
2, h(·) = 0,

and the next iterate, given the current pointy xk, is the minimizer of the following subproblem:

xk+1 = argmin
x

(x− xk)TJF (xk)TF (xk) +
1

2
(x− xk)TB(xk)(x− xk) +

σ̄

3
‖x− xk‖3,

where σ̄ > 0, JF (xk) is the Jacobian of F at xk and B(xk) is an approximation of the true hessian
of the function 1

2‖F (x)‖
2 at xk. When the residuals Fi, the Jacobian ∇F and the Hessian ∇2Fi

for each i ∈ {1, · · · ,m} are simultaneuosly Lipschitz continuous on a neighborhood of x̄, [109]
shows that this scheme takes at most O

(
ϵ−

3
2

)
residual and Jacobian evaluations to drive either

the Euclidean norm of the residual or its gradient below ϵ. Further, in [69] a similar approach
is adopted, with g(·) = 1

2‖ · ‖
2 and h(·) = 0, by constructing a quadratic approximation of F

alongside an appropriate regularization, i.e., given the current point xk, the next iterate is the
minimizer of the following r-regularized subproblem:

xk+1 = argmin
x

1

2

∥∥∥∥F (xk) +∇F (xk)(x− xk) + 1

2
(x− xk)T∇2F (xk)(x− xk)

∥∥∥∥2 + 1

r
‖x− xk‖r,

where r ≥ 2 is a given constant. Paper [69] establishes convergence to an ϵ first-order stationary
point of the objective within O

(
ϵ−min( r

r−1
, 3
2)
)

iterations, provided that the residuals Fi, the
Jacobian ∇F and the Hessian ∇2Fi for each i ∈ {1, · · · ,m} are Lipschitz continuous on a neigh-
borhood of a stationary point. It’s important to note that the aforementioned subproblem is at
least quartic and thus hard to solve. Therefore, using the norm ‖·‖ as the merit function instead
of ‖ ·‖2 is more beneficial, since in the later case the condition number usually doubles, although
the objective function for the first choice is nondifferentiable [94]. This strategy has been ex-
plored in [93], wherein the authors introduce an adaptive higher-order trust-region algorithm for
solving problem (5.4) with h smooth, where F and h are approximated with higher-order Taylor
expansions. Paper [93] establishes convergence of order O

(
ϵ
− p+1

p

)
to achieve a reduction in a

given criticality measure below a prescribed accuracy ϵ.

Note that, the optimization problem, the algorithm, and consequently the convergence analysis
in [93] are different from the present work. Moreover, it remains open whether one can solve
the corresponding subproblem in [93] efficiently for p ≥ 2, along with establishing convergence
rates under the Kurdyka-Lojasiewic (KL) property.

5.2 Regularized higher-order Taylor approximation (RHOTA) method

In this section, we present a regularized higher-order Taylor approximation algorithm for solving
composite problem (5.4). We consider the following assumptions:

Assumption 5.2.1. The following statements hold for optimization problem (5.4):

1. For F = (F1, · · · , Fm), each component Fi is p times differentiable function with the pth
derivative Lipschitz continuous with constant Li

p.
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2. Function g is convex, Lipschitz continuous with constant Lg and h is proper lower semi-
continuous and simple convex function.

3. Problem (5.4) has a solution and hence infx∈dom f f(x) ≥ f∗.

From Assumption 5.2.1 and the inequality (2.4), we get for all i = 1 : m:

∣∣Fi(x)− TFi
p (x; y)

∣∣ ≤ Li
p

(p+ 1)!
‖y − x‖p+1 ∀x, y ∈ Rn. (5.5)

Further, using that the function g is Lipschitz continuous, we get the following inequality valid
for all x, y ∈ Rn:

∣∣g(F (x))− g (TF
p (x; y)

)∣∣ ≤ Lg

∥∥F (x)− TF
p (x; y)

∥∥ ≤ Lg‖Lp‖
(p+ 1)!

‖x− y‖p+1, (5.6)

where TF
p (x; y) =

(
TF1
p (x; y), · · · , TFm

p (x; y)
)

and Lp =
(
L1
p, · · · , Lm

p

)
. Then, based on this

upper bound approximation of the objective function, one can consider an iterative process,
where given the current iterate, x̄, and a proper regularization parameterM > 0, the next point
is computed from the following subproblem:

x← arg min
y∈Rn

sM (y; x̄) := g
(
TF
p (y; x̄)

)
+

M

(p+ 1)!
‖y − x̄‖p+1 + h(y). (5.7)

Note that if x = x̄ in the previous subproblem, then x is a stationary point of the original
problem (5.4). Note also that for p = 1, this algorithm reduces to the regularized Gauss-Newton
method analyzed in [94, 56, 35]. Now we are ready to present our regularized higher-order Taylor
approximation method, called RHOTA (see Algorithm 4). Note that usually the subproblem

Algorithm 4 RHOTA
Given x0 and M > 0. For k ≥ 0 do:
compute xk+1 inexact solution of subproblem (5.7) satisfying the following descent:

sM (xk+1;xk) ≤ sM (xk;xk). (5.8)

(5.7) is nonconvex for any p ≥ 2. In order to get descent for the sequence (f(xk))k≥0, it
is enough to assume that xk+1 satisfies the descent (5.8). However, to derive convergence
rates to a stationary point or in function values (under the KL property), we need to require
additionally properties for xk+1, e.g., xk+1 generated by algorithm must satisfy an inexact (local)
optimality condition, see (5.13) in Theorem 5.3.2, i.e., computing a minimizer of the Taylor
based model sM (·;xk) within an Euclidean ball. We show in Section 5.4 that one can still use
the powerful tools from convex optimization to solve the nonconvex subproblem (5.7) globally
for some particular choices of p > 1. More precisely, when the outer function g is the norm and
the Taylor approximation is of order p = 2, we show that the corresponding subproblem can be
solved globally by efficient convex algorithms.
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5.3 Convergence analysis of RHOTA

In this section, we analyze the convergence behavior of RHOTA algorithm under different as-
sumptions for problem (5.4), i.e., when Assumption 5.2.1 holds and when, additionally, the
objective function satisfies the KL. First, let us prove that the sequence (f(xk))k≥0 is a nonin-
creasing sequence.

Theorem 5.3.1. Let Assumption 5.2.1 hold and let (xk)k≥0 be generated by RHOTA with
M − Lg‖Lp‖ > 0. Then, we have:

1. The sequence (f(xk))k≥0 is nonincreasing and satisfies:

f(xk+1) ≤ f(xk)−
M − Lg‖Lp‖

(p+ 1)!
‖xk+1 − xk‖p+1. (5.9)

2. The sequence (xk)k≥0 satisfies:

∞∑
i=1

‖xk+1− xk‖p+1<∞, lim
k→∞

‖xk+1−xk‖ =0 and min
j=0:k

‖xj+1− xj‖p+1 ≤O
(
1

k

)
.

Proof. From inequality (5.6), we get:

−Lg‖Lp‖
(p+ 1)!

‖xk+1 − xk‖p+1 + g(F (xk+1)) ≤ g
(
TF
p (xk+1;xk)

)
.

Further, using the descent (5.8), we also get:

M − Lg‖Lp‖
(p+ 1)!

‖xk+1 − xk‖p+1 + f(xk+1)

≤ g
(
TF
p (xk+1;xk)

)
+ h(xk+1) +

M

(p+ 1)!
‖xk+1 − xk‖p+1

= sM (xk+1;xk) ≤ sM (xk;xk) = f(xk).

Hence, the sequence (f(xk))k≥0 is monotonically nonincreasing. Further, summing up the last
inequality and using that f is bounded from below by f∗, we get:

k∑
j=0

M − Lg‖Lp‖
(p+ 1)!

‖xj+1 − xj‖p+1 ≤ f(x0)− f(xk) ≤ f(x0)− f∗.

Hence, there exists k̄ ∈ {0, · · · , k} such that:

‖xk̄+1 − xk̄‖p+1 = min
j=0:k

‖xj+1 − xj‖p+1 ≤ (f(x0)− f∗)(p+ 1)!

(M − Lg‖Lp‖)(k + 1)
, (5.10)

and then our assertions follow. ■

Remark 10. Theorem 5.3.1 requires M − Lg‖Lp‖ > 0, where ‖Lp‖= ‖(L1
p,· · ·, Lm

p )‖. If Lg and
(Lp)

m
i=1 are known, then one can choose M = Lg‖Lp‖ + R0 for some R0 > 0. In Section 5.3.3,

we propose an adaptive variant of RHOTA that does not require the knowledge of the Lipschitz
constants Lg and (Lp)

m
i=1.
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5.3.1 First order convergence

In [56, 23], the authors prove that for a composite problem of the form (5.4), the quantity
dist(0, ∂f(xk+1)) doesn’t invariably approach zero as ‖xk+1 − xk‖ tends to zero. Hence, in
alignment with the framework outlined in [23], for a given µ > 0 we introduce the (artificial)
sequence:

yk+1 = argmin
y∈Rn

f(y) +
µ

(p+ 1)!
‖y − xk‖p+1. (5.11)

From the optimality conditions of the iteration yk+1, we get:

− µ
p!
‖yk+1 − xk‖p−1 (yk+1 − xk) ∈ ∂f(yk+1).

This implies that

Sf (yk+1) = dist (0, ∂f(yk+1)) ≤
µ

p!
‖yk+1 − xk‖p. (5.12)

In the next theorem we establish that the sequence (yk)k≥0 is close to the sequence (xk)k≥0, both
sequences have the same set of limit points, and (yk)k≥0 converges towards a stationary point
of the original problem with a rate O(k−

p
p+1 ). These results are valid under the condition that

the sequence (xk)k≥0 generated by RHOTA algorithm satisfies an inexact optimality criterion.

Theorem 5.3.2. Let the assumptions of Theorem 5.3.1 hold. Let (xk)k≥0 be generated by
RHOTA algorithm. Let µ > M +Lg‖Lp‖ and yk+1 be given in (5.11) and assume xk+1 satisfies
the following inexact optimality condition for subproblem (5.7):

sM (xk+1;xk)− min
y: ∥y−xk∥≤Dk

sM (y;xk) ≤
δ

(p+ 1)!
‖xk+1 − xk‖p+1, (5.13)

where δ ≥ 0, Dk :=
(
(p+1)!

µ (f(xk)− f∗)
) 1

p+1 and sM (·;xk) is given in (5.7). If we denote

Lµ =
(
µ+δ+Lg∥Lp∥−M
µ−(M+Lg∥Lp∥)

)
, then we have:

1. The sequences (yk)k≥0 satisfies ‖yk+1 − xk‖p+1 ≤ Lµ‖xk+1 − xk‖p+1 ∀k ≥ 0.

2. The following convergence rate holds:

min
j=0:k

Sf (yj+1)
p+1
p ≤ Lµ(f(x0)− f∗)

k + 1

(
µ

p!

) p+1
p (p+ 1)!

M − Lg‖Lp‖
.

Proof. From the definition of yk+1, we have:

f(yk+1) +
µ

(p+ 1)!
‖yk+1 − xk‖p+1

(5.11)
≤ f(xk+1) +

µ

(p+ 1)!
‖xk+1 − xk‖p+1

(5.6)
≤ sM (xk+1;xk) +

µ+ Lg‖Lp‖ −M
(p+ 1)!

‖xk+1 − xk‖p+1

(5.13)
≤ min

y: ∥y−xk∥≤Dk

sM (y;xk)+
δ

(p+ 1)!
‖xk+1−xk‖p+1+

µ+ Lg‖Lp‖ −M
(p+ 1)!

‖xk+1−xk‖p+1

(5.6)
≤ min

y: ∥y−xk∥≤Dk

f(y) +
M+Lg‖Lp‖

(p+1)!
‖y − xk‖p+1+

µ+δ + Lg‖Lp‖−M
(p+1)!

‖xk+1−xk‖p+1

≤ f(yk+1) +
M + Lg‖Lp‖

(p+ 1)!
‖yk+1 − xk‖p+1 +

µ+ δ + Lg‖Lp‖ −M
(p+ 1)!

‖xk+1 − xk‖p+1,
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where the last inequality is derived from the observation that ‖yk+1 − xk‖ ≤ Dk. Indeed, from
the definition of yk+1 from (5.11) we have:

f(yk+1) +
µ

(p+ 1)!
‖yk+1 − xk‖p+1 ≤ f(xk),

which implies that:
µ

(p+ 1)!
‖yk+1 − xk‖p+1 ≤ f(xk)− f∗.

and thus ‖yk+1 − xk‖ ≤ Dk. Further, we have:

‖yk+1 − xk‖p+1 ≤
(
µ+ δ + Lg‖Lp‖ −M
µ− (M + Lg‖Lp‖)

)
‖xk+1 − xk‖p+1 ∀k ≥ 0, (5.14)

which is the first assertion. It follows immediately from the last inequality that (yk)k≥0 and
(xk)k≥0 have the same set of limit points. Additionally, from (5.10), we have that there exists
k̄ ∈ {0, · · · , k} such that:

min
j=0:k

Sf (yj+1)
p+1
p ≤ Sf (yk̄+1)

p+1
p

(5.12)
≤

(
µ

p!

) p+1
p

‖yk̄+1 − xk̄‖p+1 (5.15)

(5.14)
≤ Lµ

(
µ

p!

) p+1
p

‖xk̄+1 − xk̄‖p+1
(5.10)
≤ Lµ

(
µ

p!

) p+1
p (f(x0)− f∗)(p+ 1)!

(M − Lg‖Lp‖)(k + 1)
.

Hence, our second statement follows. ■

Remark 11. In Theorem 5.3.2, we establish convergence rate guarantees to a near stationary
point of order O

(
k
− p

p+1

)
, which is the usual convergence rate for higher-order algorithms for

(unconstrained) nonconvex p-smooth problems [110, 93, 23]. In our convergence analysis, we ad-
ditionally assume that the sequence generated by RHOTA algorithm satisfy an inexact optimal-
ity condition (5.13), which requires computing a minima over an Euclidean ball. Nevertheless,
in Section 5.4 we present an efficient implementation of RHOTA algorithm for the particular
case where g(·) = ‖ · ‖ and p = 2. More precisely, we show that one can still use powerful tools
from convex optimization to compute the global solution of the nonconvex subproblem (5.7),
which automatically satisfies the inexact optimality condition (5.13).

5.3.2 Better convergence under KL

In this section, we establish improved convergence rates for RHOTA algorithm under the KL
property, i.e., we prove linear/sublinear convergence in function values for the original sequence
(xk)k≥0 generated by RHOTA. We denote the set of limit points of (xk)k≥0 by Ω(x0):

Ω(x0) ={x̄ ∈ Rn : ∃(kt)t≥0 ↗ , such that xkt → x̄ as t→∞}.

Next lemma derives some properties for Ω(x0).

Lemma 5.3.3. Let the assumptions of Theorem 5.3.2 hold. Additionally, assume that (xk)k≥0

is bounded and f is continuous. Then, we have: ∅ 6= Ω(x0) ⊆ stat f , Ω(x0) is compact and
connected set, and f is constant on Ω(x0), i.e., f(Ω(x0)) = f∗.

Proof. Let us prove that f(Ω(x0)) is constant. From the descent (5.9) we have that (f(xk))k≥0

is monotonically decreasing, and since f is assumed to be bounded from below, it converges.
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Let us say to f∗ > −∞, i.e., f(xk)→ f∗ as k →∞. On the other hand, let x∗ be a limit point of
the sequence (xk)k≥0. This means that there exists a subsequence (xkt)t≥0 such that xkt → x∗.
Since f is continuous, we get f(xkt) → f(x∗) = f∗ and hence, we have f(Ω(x0)) = f∗. The
closeness property of ∂f implies that Sf (x∗) = 0, and thus 0 ∈ ∂f(x∗). This proves that x∗ is a
stationary point of f and thus Ω(x0) is nonempty. By observing that Ω(x0) can be viewed as an
intersection of compact sets, Ω(x0) = ∩q≥0∪k≥q{xk} so it is also compact. The connectedness
follows from [46]. This completes the proof. ■

Next, we derive improved convergence rates in function values for the sequence (xk)k≥0 generated
by RHOTA, not for the artificial sequence (yk)k≥0 as in Theorem 5.3.2.

Theorem 5.3.4. Let the assumptions of Lemma 5.3.3 hold. Additionally, assume that f sat-
isfy the KL property (2.16) on Ω(x0). Then, the following convergence rates hold for (xk)k≥0

generated by RHOTA algorithm for k sufficiently large:

1. If q ≥ p+1
p , then f(xk) converges to f∗ linearly.

2. If q < p+1
p , then f(xk) converges to f∗ at sublinear rate of order O

(
1

k
pq

p+1−pq

)
.

Proof. We have:

f(xk+1)− f∗
(5.6)
≤ sM (xk+1;xk) +

Lg‖Lp‖ −M
(p+ 1)!

‖xk+1 − xk‖p+1 − f∗

(5.13)
≤ min

y: ∥y−xk∥≤Dk

sM (y;xk) +
δ + Lg‖Lp‖ −M

(p+ 1)!
‖xk+1 − xk‖p+1 − f∗

(5.6)
≤ min

y: ∥y−xk∥≤Dk

f(y)−f∗+
M+Lg‖Lp‖

(p+1)!
‖y − xk‖p+1+

δ + Lg‖Lp‖−M
(p+1)!

‖xk+1−xk‖p+1

≤ f(yk+1)− f∗+
(
M + Lg‖Lp‖

(p+ 1)!
‖yk+1 − xk‖p+1+

δ + Lg‖Lp‖−M
(p+ 1)!

‖xk+1 − xk‖p+1

)
≤ σqdist(0, ∂f(yk+1))

q +

(
M + Lg‖Lp‖+ Lµ(δ + Lg‖Lp‖−M)

(p+ 1)!
‖xk+1 − xk‖p+1

)
≤

(
σq(Lµ)

pq
p+1µq

(p!)q
‖xk+1 − xk‖pq

(1−Lµ)M+(1+Lµ)Lg‖Lp‖+ Lµδ

(p+ 1)!
‖xk+1 − xk‖p+1

)
(5.9)
≤ C1

(
f(xk)− f(xk+1)

) pq
p+1 + C2

(
f(xk)− f(xk+1)

)
,

where the fourth inequality follows from ‖yk+1 − xk‖ ≤ Dk, the fifth inequality is deduced
from (2.16) combined with the first assertion of Theorem 5.3.2, (i.e., the sequences (xk)k≥0

and (yk)k≥0 share the same limit point) and the sixth inequality follows from (5.12) combined

with the first assertion of Theorem 5.3.2. Here C1 =
σq(Lµ)

pq
p+1 µq

(p!)q

(
(p+1)!

M−Lg∥Lp∥

) pq
p+1 and C2 =

M+Lg∥Lp∥+Lµ(δ+Lg∥Lp∥−M)
M−Lg∥Lp∥ . Let us denote ∆k = f(xk)−f∗. Subsequently, we derive the following

recurrence:

∆k+1 ≤ C1 (∆k −∆k+1)
qp
p+1 + C2 (∆k −∆k+1) .

Using Lemma 2.4.2 with θ = p+1
pq , our assertions follow. ■

Remark 12. In this section, we have derived improved convergence rates in terms of function
values for sequence (xk)k≥0 generated by RHOTA, not for (yk)k≥0, by leveraging higher-order
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information to solve problem (5.4), and to our knowledge, these rates represent novel findings
for such problems when employing higher-order information. Notably, for p = 1, our results
align with the convergence rates in [35].

5.3.3 Adaptive regularized higher-order Taylor approximation method

In RHOTA algorithm, we need to compute a regularization parameter M > Lg‖Lp‖. However,
in practice, determining Lipschitz constants Lg and Lp may be challenging. Consequently, in
this section, we introduce an adaptive regularized higher-order Taylor algorithm (A-RHOTA),
which does not require prior knowledge of these constants.

Algorithm 5 A-RHOTA algorithm
Given x0 and M0, R0 > 0 and i, k = 0.
while some criterion is not satisfied do

1. define sMk
(y;xk) := g

(
TF
p (y;xk)

)
+ 2iMk

(p+1)!‖y − xk‖
p+1 + h(y).

2. compute xk+1 inexact solution of miny sMk
(y;xk).

if descent (5.9) holds, then go to step 3.
else set i = i+ 1 and go to step 1.

end if
3. set k = k + 1, Mk+1 = 2i−1Mk and i = 0.

end while

This line search procedure ensures the decrease (5.9) and finishes in a finite number of steps.
Indeed, if Mk ≥ R0 + Lg‖Lp‖, then from inequality (5.6), we get:

g
(
TF
p (xk+1;xk)

)
− f(xk+1) ≥

−Lg‖Lp‖
(p+ 1)!

‖xk+1 − xk‖p+1.

This implies that:

f(xk)− f(xk+1) = sMk
(xk;xk)−f(xk+1) ≥ sMk

(xk+1;xk)−f(xk+1)

≥ Mk−Lg‖Lp‖
(p+ 1)!

‖xk+1−xk‖p+1 ≥ R0

(p+ 1)!
‖xk+1−xk‖p+1.

Note also that we have Mk ≤ 2(R0 + Lg‖Lp‖) for all k ≥ 0. Consequently, using similar
arguments as before allows us to derive convergence rates similar to Theorems 5.3.2 and 5.3.4
for the adaptive regularized higher-order Taylor algorithm (A-RHOTA).

5.4 Efficient solution of the nonconvex subproblem

In this section, we present an efficient implementation of RHOTA algorithm for the case g(·) =
‖ · ‖, p = 2 and quadratic h(x) = (1/2)xTBx+ ax. Within this context, xk+1 is the solution of
the following nonconvex subproblem (see the subproblem (5.7)):

P∗ = min
x∈Rn

∥∥∥∥F (xk) + 〈∇F (xk), x− xk〉+ 1

2
∇2F (xk)[x− xk]2

∥∥∥∥+ M

6
‖x− xk‖3 (5.16)

+
1

2
(x− xk)TB(x− xk) + 〈a+Bxk, x− xk〉.

with 〈∇F (xk), x − xk〉 = [〈∇F1(xk), x− xk〉,· · ·, 〈∇Fm(xk), x− xk〉] and ∇2F (xk)[x − xk]
2 =[

∇2F1(xk)[x− xk]2, · · · ,∇2Fm(xk)[x− xk]2
]
. Denote u = (u1,· · ·, um). Then, this subproblem
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is equivalent to:

min
x∈Rn

max
∥u∥≤1

m∑
i=1

uiFi(xk) +

〈
m∑
i=1

ui∇Fi(xk) + a+Bxk, x− xk

〉

+
1

2

〈(
m∑
i=1

ui∇2Fi(xk) +B

)
(x− xk), (x− xk)

〉
+
M

6
‖x− xk‖3.

Further, the last term can be written equivalently as:

M

6
‖x− xk‖3 = max

w≥0

(
w

4
‖x− xk‖2 −

1

12M2
w3

)
.

Denote Hk(u,w) =
∑m

i=1 ui∇2Fi(xk) + B + w
2 In, Gk(u) =

∑m
i=1 ui∇Fi(xk) + a + Bxk and

lk(u) =
∑m

i=1 uiFi(xk). Then, we have:

P∗ = min
x∈Rn

max
∥u∥≤1w≥0

lk(u) + 〈Gk(u), x− xk〉+
1

2
〈Hk(u,w)(x−xk), x−xk〉−

w3

12M2
.

Consider the following notations:

θk(x, u) = lk(u)+〈Gk(u), x−xk〉+
1

2

〈(
m∑
i=1

ui∇2Fi(xk)+B

)
(x−xk), x−xk

〉
+
M

6
‖x−xk‖3

βk(u,w) = lk(u)−
1

2

〈
Hk(u,w)

−1Gk(u), Gk(u)
〉
− 1

12M2
w3, rk = ‖xk+1 − xk‖ and

Fk =

{
(u,w) ∈ Rm × R+ : ‖u‖ ≤ 1 and

m∑
i=1

ui∇2Fi(xk) +B +
w

2
I � 0

}
.

Then, we have the following theorem:

Theorem 5.4.1. If M > 0, then we have the following relation:

θ∗ := min
x∈Rn

max
∥u∥≤1

θk(x, u) = max
(u,w)∈Fk

βk(u,w) = β∗.

For any (u,w) ∈ Fk the direction xk+1 = xk −Hk(u,w)
−1Gk(u) satisfies:

0 ≤ θk(xk+1, u)− βk(u,w) =
M

12

( w
M

+ 2rk

)(
rk −

w

M

)2
. (5.17)

Proof. First, we show θ∗ ≥ β∗. Indeed, using a similar reasoning as [10], we have:

θ∗ = min
x∈Rn

max
(u,w)∈Rm×R+

∥u∥≤1

lk(u)+〈Gk(u), x−xk〉+
1

2
〈Hk(u,w)(x−xk), x−xk〉−

w3

12M2

≥ max
(u,w)∈Rm×R+

∥u∥≤1

min
x∈Rn

lk(u)+〈Gk(u), x−xk〉+
1

2
〈Hk(u,w)(x−xk), x−xk〉−

w3

12M2

≥ max
(u,w)∈Fk

min
x∈Rn

lk(u)+〈Gk(u), x−xk〉+
1

2
〈Hk(u,w)(x−xk), x−xk〉 −

w3

12M2

= max
(u,w)∈Fk

lk(u)−
1

2

〈
Hk(u,w)

−1Gk(u), Gk(u)
〉
− 1

12M2
w3 = β∗.
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Further, let (u,w) ∈ Fk. Then, we have Gk(u) = −Hk(u,w)(xk+1 − xk) and thus:

θ(xk+1, u) = lk(u)− 〈Hk(u,w)(xk+1 − xk), xk+1 − xk〉

+
1

2

〈(
m∑
i=0

ui∇2Fi(xk) +B

)
(xk+1 − xk), xk+1 − xk

〉
+
M

6
r3k

= lk(u)−
1

2

〈(
m∑
i=0

ui∇2Fi(xk) +B +
w

2
In

)
(xk+1 − xk), xk+1 − xk

〉
− w

4
r2k +

M

6
r3k

= βk(u,w) +
1

12M2
w3 − w

4
r2k +

M

6
r3k = βk(u,w) +

M

12

( w
M

)3
−M

4

( w
M

)
r2k +

M

6
r3k

= βk(u,w) +
M

12

( w
M

+ 2rk

)(
rk−

w

M

)2
,

which proves (5.17). Note that we have:

∇wβk(u,w) =
1

4
‖xk+1 − xk‖2 −

1

4M2
w2 =

1

4

(
rk +

w

M

)(
rk −

w

M

)
.

Therefore if β∗ is attained at some (u∗, w∗) > 0 from Fk, then ∇βk(u∗, w∗) = 0. This implies
w∗

M = rk(u
∗, w∗) and by (5.17) we conclude that θ∗ = β∗. ■

Remark 13. The global minimum of the nonsmooth nonconvex problem (5.16) is:

xk+1 = xk −Hk(uk, wk)
−1Gk(uk),

with (uk, wk) solution of the following convex dual problem:

max
(u,w)∈Fk

lk(u)−
1

2

〈
Hk(u,w)

−1Gk(u), Gk(u)
〉
− 1

12M2
w3, (5.18)

i.e., a maximization of a concave function over a convex set Fk. Hence, if m is of moderate size,
this convex dual problem (5.18) can be solved very efficiently by interior point methods [66].
Thus, RHOTA algorithm is implementable for p = 2, since we can effectively compute in fact
the global minimum xk+1 of the subproblem (5.7) for g(·) = ‖ · ‖ using the powerful tools from
convex optimization.

5.5 Applications of RHOTA to nonlinear programming

In this section, we investigate the behavior of RHOTA algorithm when applied to specific prob-
lems of the form (5.4). First, we consider solving systems of nonlinear equations and then we
consider optimization problems with nonlinear equality constraints. In both cases, we derive
new convergence rates that have not been yet considered in the literature.

5.5.1 Nonlinear least-squares

In this section we focus on the task of solving a system of nonlinear equations (we assume that
this system admits solutions):

Find x ∈ Rn such that : Fi(x) = 0 ∀i = 1 : m (with m ≤ n).

This problem can be reformulated as the following nonlinear least-squares problem:

min
x∈Rn

‖F (x)‖, (5.19)
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which, essentially, represents a particular form of problem (5.4) with h = 0 and g(·) = ‖ · ‖
(hence, Lg = 1). For this particular problem, we assume that the statements from Assumption
5.2.1 related to Fi’s hold and additionally, there exists σ > 0 such that:

σmin(∇F (x)) ≥ σ > 0, ∀x ∈ L(x0). (5.20)

This nondegeneracy condition has been considered frequently in the literature; see, e.g., [94,
111]. It holds, e.g., when the Mangasarian-Fromovitz constraint qualification is satisfied (i.e.,
the gradients of Fi(x)’s, i = 1 : m, are linearly independent for all x ∈ L(x0)) and L(x0) is
bounded, see [111]. Note that to ensure a global convergence guarantee, the nondegenerate
assumption must be satisfied across the entire level set. However, for local convergence, this
assumption only needs to hold in a (local) solution, denoted as x∗. For simplicity, denote

Cσ =
M−∥Lp∥
(p+1)!Lµ

(
p!σ
µ

) p+1
p . Under this additional nondegeneracy condition, we can establish finite

convergence for RHOTA.

Theorem 5.5.1. Let the assumptions of Theorem 5.3.2 hold for problem (5.19). Let also (xk)k≥0

be generated by RHOTA algorithm and (yk)k≥0 as defined in (5.11), and, additionally, assume
that σmin(∇F (x)) ≥ σ > 0 for all x ∈ L(x0). Then, there exists finite k ∈ {0, 1, · · · , k̄}, with
k̄ =

⌈
f(x0)
Cσ

⌉
, such that either F (xk) = 0 or F (yk) = 0.

Proof. Combining (5.9) with the first statement of Theorem 5.3.2, we obtain:

f(xk+1) ≤ f(xk)−
M − ‖Lp‖
(p+ 1)!

‖xk+1 − xk‖p+1 ≤ f(xk)−
M − ‖Lp‖
(p+ 1)!Lµ

‖yk+1 − xk‖p+1.

From the optimality condition of yk+1 (see (5.11)), we get:

− µ
p!
‖yk+1 − xk‖p−1 (yk+1 − xk) ∈ ∂f(yk+1) = ∇F (yk+1)dk+1,

where

dk+1 ∈ ∂‖F (yk+1)‖ =

{
F (yk+1)

∥F (yk+1)∥ if F (yk+1) 6= 0

{d ∈ Rm : ‖d‖ ≤ 1} if F (yk+1) = 0.
(5.21)

We distinguish two cases. First, given k̄ ≥ 1, consider that for all k ∈ {0, 1, · · · , k̄ − 1},
F (yk+1) 6= 0. Since (xk)k≥0, (yk)k≥0 ⊂ L(x0), from the nondegeneracy condition of the Jacobians
(i.e., ‖∇F (x)d‖ ≥ σ‖d‖ for any d ∈ Rm and x ∈ L(x0)), we have:

µ

p!
‖yk+1 − xk‖p =

‖∇F (yk+1)F (yk+1)‖
‖F (yk+1)‖

≥ σ ∀k = 0 : k̄ − 1.

Hence, we obtain constant decrease in function values for the RHOTA iterates:

f(xk+1) ≤ f(xk)−
M − ‖Lp‖
(p+ 1)!Lµ

(
p!σ

µ

) p+1
p

= f(xk)− Cσ ∀k = 0 : k̄ − 1.

Summing up the last inequality from 0 to k, we get:

0 ≤ f(xk) ≤ f(x0)− kCσ ∀k = 0 : k̄.

Thus, if k̄ =
⌈
f(x0)
Cσ

⌉
, we deduce that 0 ≤ f(xk̄) ≤ f(x0)− k̄Cσ ≤ 0, or equivalently F (xk̄) = 0.

In the second case there exists some k ∈ {0, 1, · · · , k̄−1} such that F (yk+1) = 0. Together, both
cases prove our statement. ■
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5.5.2 Equality constrained nonlinear problems

Let us now consider an optimization problem with nonlinear equality constraints:

min
x∈Rn

h(x) s.t.: F (x) = 0, (5.22)

where F (x) = (F1(x), · · · , Fm(x)), with m ≤ n, and h is proper lsc function. For a given positive
constant ρ, the exact penalty reformulation of (5.22) is [49]:

min
x∈Rn

f(x) := h(x) + ρ‖F (x)‖, (5.23)

which fits into the formulation (5.4) with g(·) = ρ‖ · ‖. It is known that, under proper con-
straint qualification conditions and for sufficiently large ρ, any stationary point x∗ of the exact
penalty problem (5.23) corresponds to a Karush-Kuhn-Tucker (KKT) point of the constrained
problem (5.22) (i.e., ∃λ∗ s.t. 0 ∈ ∂h(x∗) + ∇F (x∗)Tλ∗ and F (x∗) = 0), see e.g., [108]. In the
realm of nonlinear programming, when the objective function h exhibits smoothness, constraint
qualifications are naturally related to the constraints themselves, such as LICQ or MFCQ (see
Section 2.4 for more details). However, when the objective function, h, takes on a non-smooth
character, a shift occurs, necessitating the introduction of new constraint qualifications. This
adjustment becomes imperative because the non-smoothness of the objective function has the
potential to significantly impact the behavior and satisfaction of the constraints. Hence, in such
scenarios, a nuanced understanding of these new constraint qualifications becomes essential to
navigate the complexities inherent in optimizing non-smooth objectives within nonlinear pro-
gramming. In this section, for problem (5.22), we assume that the statements from Assumption
5.2.1 related to Fi’s and f hold, and additionally, there exists σ > 0 such that the following
constraint qualification holds:

σ‖λ‖ ≤ dist
(
−∇F (x)Tλ, ∂∞h(x)

)
∀x ∈ L(x0) and λ ∈ ∂‖F (x)‖. (5.24)

Note that if h = 0 or h is locally Lipschitz continuous, then ∂∞h(x) = {0} (see Theo-
rem 9.13 in [39]) and thus (5.24) reduces to the nondegeneracy condition from Section 5.5.1:
σmin(∇F (x)) ≥ σ for all x ∈ L(x0). A constraint qualification condition of the form σ‖λ‖ ≤
dist

(
−∇F (x)Tλ, ∂h(x)

)
for all x ∈ L(x0) and λ ∈ ∂‖F (x)‖ has been adopted when analyzing

the convergence of iterative algorithms for solving optimization problems with nonconvex func-
tional constraints; see, e.g., [95, 96]. However, in [95, 96], the proposed constraint qualification
condition loses coherence in cases where, e.g., the nonsmooth component exhibits (local) Lips-
chitz continuity, such as h(·) = ‖ · ‖1 or ‖ · ‖2, while our (5.24) imposes only a condition on the
Jacobian ∇F for this particular case.

Theorem 5.5.2. Let the assumptions of Theorem 5.3.2 hold, and, additionally, the constraint
qualification condition (5.24) holds. Let ρ̄ > 0 be fixed sufficiently large and the sequence (xk)k≥0

be generated by RHOTA applied to penalty problem (5.23), with ρ ≥ ρ̄, M ≥ 2ρ‖Lp‖, and (yk)k≥0

be given in (5.11), with µ = 2(M + ρ‖Lp‖). Then, any limit point of the sequence (xk)k≥0 is a
KKT point of (5.22). Moreover, the convergence rate to a KKT point is of order O

(
ρk

− p
p+1

)
.

Proof. From the optimality conditions of yk+1 applied to f given in (5.23) (see (5.11)), there
exists λk+1 ∈ ∂‖F (yk+1)‖ such that:

µ

p!
‖yk+1 − xk‖p−1(xk − yk+1) ∈ ρ∇F (yk+1)

Tλk+1 + ∂h(yk+1) ∀k ≥ 0. (5.25)

92



Chapter 5. Regularized higher-order Taylor approximation methods for nonlinear least-squares

This implies that (for simplicity, we denote N k+1
epih = Nepih

(
yk+1, h(yk+1)

)
):

dist
( (
−ρ∇F (yk+1)

Tλk+1, 0
)
,N k+1

epih

)
−
∥∥∥∥( µp!‖yk+1 − xk‖p−1(yk+1 − xk), 1

)∥∥∥∥
≤ dist

((
− ρ∇F (yk+1)

Tλk+1 −
µ

p!
‖yk+1−xk‖p−1(yk+1−xk),−1

)
,N k+1

epih

)
= 0.

On the other hand, from the definition of the horizon subdifferential (2.13), we get:

dist
(
−ρ∇F (yk+1)

Tλk+1, ∂
∞h(yk+1)

)
= dist

((
− ρ∇F (yk+1)

Tλk+1, 0
)
,N k+1

epih

)
.

Therefore, combining the last two inequalities with the constraint qualification condition and
using that ∂∞h(yk+1) is a cone, we obtain for any ρ > 0:

σρ‖λk+1‖ ≤ dist
(
−ρ∇F (yk+1)

Tλk+1, ∂
∞h(yk+1)

)
≤ µ

p!
‖yk+1 − xk‖p + 1. (5.26)

Or, equivalently, using the definition of M and ρ ≥ ρ̄, we have:

‖λk+1‖ ≤
(

2M

σρ̄p!
+

2‖Lp‖
σp!

)
‖yk+1 − xk‖p +

1

σρ̄
.

Since ‖yk+1 − xk‖ → 0 as k → ∞ (see Theorems 5.3.1 and 5.3.2), then the previous relation
implies that for fixed ρ̄ > 0 sufficiently large (e.g., σρ̄ > 1) there exists integer k̄ ≥ 0 such that:

‖λk+1‖ < 1 =⇒ F (yk+1)
(5.21)
= 0 ∀k ≥ k̄, ρ ≥ ρ̄.

Hence, feasibility is achieved after a finite number of iterations. Additionally, it also follows
from (5.25) that for any k ≥ 0 there exists hyk+1

∈ ∂h(yk+1) such that:

‖∇F (yk+1)
T (ρλk+1) + hyk+1

‖ = µ

p!
‖yk+1 − xk‖p → 0 as k →∞.

Using the closedness of the graph of ∂h and basic limit rules, we deduce that any limit point of
the sequence (yk)k≥0 is a KKT point of (5.22). Since the set of limit points of (xk)k≥0 coincides
with the set of limit points of (yk)k≥0 (see Theorem 5.3.2), the first statement follows. Further,
from Theorem 5.3.2, there exists k̄ ∈ {0, · · · , k} such that:

Sf (yk̄+1) ≤


(
µ+δ+ρ∥Lp∥−M
µ−(M+ρ∥Lp∥)

)
µ

p+1
p (p+ 1)!

(M − ρ‖Lp‖)(p!)
p+1
p (k + 1)

(f(x0)− f∗)


p

p+1

.

Since Assumption 5.2.1.3 holds, then f(x) = h(x) + ρ‖F (x)‖ ≥ f∗ and, consequently, we have
f(x0)− f∗ = O(ρ). In addition, since δ � ρ, we deduce the following bound:

Sf (yk̄+1) ≤ O
(

ρ

k
p

p+1

)
. (5.27)

Further, combining (5.26) with first assertion of Th. 5.3.2 and with eq. (5.10), we get:

‖λk̄+1‖ ≤
µ(Lµ)

p
p+1

p!σρ

((f(x0)− f∗)(p+ 1)!)
p

p+1

((M − ρ‖Lp‖)(k + 1))
p

p+1

+
1

σρ
= O

(
1

k
p

p+1

)
+

1

σρ
,

where O(·) does not depend on ρ. Hence, for any given ϵ, with 0 < ϵ < 1
2 , and for any ρ > 2

σ , if
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k ≥ O
(
ρ

p+1
p ϵ

− p+1
p

)
, then there exists hyk̄+1

∈ ∂h(yk̄+1) such that:

Sf (yk̄+1)=‖∇F (yk̄+1)
T(ρλk̄+1)+hyk̄+1

‖≤ϵ and ‖λk̄+1‖≤ϵ+
1

σρ
<1⇒ F (yk̄+1)

(5.21)
= 0,

i.e., yk̄+1 satisfies ϵ-KKT conditions (but exact feasibility), i.e., second statement. ■

Remark 14. From previous proof, one notices that in order to guarantee feasibility, ρ needs to
be sufficiently large, e.g., ρ > 1

σ . On the other hand, it is known that in exact penalty methods,
one needs to choose ρ larger than the norm of Lagrange multiplier associated to a KKT point
of (5.22) [49]. Let (x∗, λ∗) be a KKT point of (5.22), i.e.:

(−∇F (x∗)Tλ∗,−1) ∈ Nepih(x
∗, h(x∗)).

This implies that:

σ‖λ∗‖
(5.24)
≤ dist(−∇F (x∗)Tλ∗, ∂∞h(x∗)) ≤ 1 ⇒ ρ >

1

σ
≥ ‖λ∗‖,

i.e., we have established the connection between our lower bound 1/σ and the known lower bound
from literature ‖λ∗‖ on the exact penalty parameter ρ. To the best of our knowledge, Theorem
5.5.2 provides the first convergence results for a higher-order exact penalty method for solving
the equality constrained optimization problem (5.22), i.e., finding a KKT point. Specifically, for
p very large, we get a rate of order O(ϵ−1), while for p = 1 our rate O(ϵ−2) aligns with that
previously obtained in e.g., [108].

In Chapter 7, we will implement RHOTA algorithm on concrete applications to evaluate its
performance and versatility. Through a series of case studies, we will test the algorithm across
various domains, including power systems, phase retrieval, and output feedback control prob-
lems, analyzing how it handles complex data structures and different operational conditions.
The outcomes from these applications will offer insights into the algorithm’s practical utility
and robustness.

5.6 Conclusions

In this chapter, we introduced a regularized higher-order Taylor approximation (called RHOTA)
method designed to solve composite problems, such as nonlinear least-squares, which take the
form given by equation (5.4). Our approach utilizes higher-order derivatives to construct a model
that closely approximates the objective function. We derived global convergence guarantees for
general cases, and we demonstrated faster convergence rates under the Kurdyka-Łojasiewicz
property. Our discussion includes an efficient implementation of the proposed method. We also
explored extensions of our theoretical results to nonlinear systems of equations and constrained
optimization problems.
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6 Inexact first-order oracle of degree q

This chapter addresses a simple composite optimization problem where direct access to the
first order information of the smooth component is unavailable. We introduce an inexact

first order oracle of degree q, which arises naturally in various contexts, such as in approximate
gradient methods. Subsequently, we examine the behavior of an inexact proximal gradient
method for both convex and non-convex problems. We establish global convergence rates that
depend on the degree q and demonstrate that our convergence rates are better as q increases.
Additionally, we provide numerical simulations to illustrate the effectiveness of our proposed
approach.

The chapter is structured as follows: Section 6.1 provides a comprehensive literature review on
inexact first order oracles and methods. In Section 6.2, we introduce our inexact first order
oracle of degree q, along with several examples that satisfy our definition. Following this, in
Section 6.3, we present gradient based algorithms based on the proposed inexact oracle and
derive global convergence results in both convex and nonconvex scenarios. Section 6.4 then
delves into numerical simulations and their corresponding results. The content presented in this
chapter is derived from the published paper [28].

6.1 State of the art

In this chapter, we consider the following simple composite optimization problem:

min
x∈E

f(x) := F (x) + h(x), (6.1)

where h : E → R̄ is a simple (i.e., proximal easy) closed convex function, F : E → R is
a general lower semicontinuous function (possibly nonconvex) and there exist f∞ such that
f(x) ≥ f∞> −∞ for all x ∈ dom f = domh. We assume that we can compute exactly the
proximal operator of h and that we cannot have access to the (sub)differential of F but can
compute an approximation of it at any given point.

Gradient-based optimization methods are commonly applied in scenarios where high accuracy
is not crucial, such as in machine learning, data analysis, signal processing, and statistics [15,
16, 17, 18]. Traditional convergence analyses of these methods typically assume exact gradient
information for the objective function. Consider the following optimization problem (particular
case of problem (6.1) by considering h the indicator function of the set Q):

min
x∈Q

F (x),

where Q is a simple convex and compact set in Rn, and f is a convex function with L- Lipschitz
continuous gradients, i.e.:

‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ Q.

It is well established that this problem can be solved by a gradient type method with a complex-
ity of O(ϵ−1/2), where ϵ is the desired precision accuracy [112]. However, in many real-world
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applications, exact gradients are often unavailable or impractical to compute. This is espe-
cially true when gradients are derived by solving another optimization problem or involve large
datasets. In such cases, using inexact (approximate) gradient information becomes necessary.
Optimization algorithms that rely on inexact first-order oracles are widely studied in the lit-
erature; see, for example, [113, 114, 115, 116, 117, 118, 86, 119]. For example, D’Aspremont
[120] demonstrated that even when substituting the exact gradient with an approximate one,
significant computational and storage savings can be achieved without compromising the opti-
mal convergence rate. To maintain the desired complexity, the approximate gradient ∇̃f(x) at
any x ∈ Q must meet the following condition [120]:

〈∇̃F (x)−∇F (x), y − z〉 ≤ δ, ∀y, z ∈ Q, (6.2)

where δ > 0 represent a positive tolerance indicating the precision of an approximate gradient.
By meeting this condition, gradient-based methods can achieve substantial reductions in com-
putational cost, thereby facilitating their application across a wider range of use cases without
compromising efficiency or scalability. For instance, when this approach is applied to semidefi-
nite programs, it often involves calculating only the first few leading eigenvalues of the current
iterate instead of performing a complete matrix exponential [120]. This strategy significantly
reduces computational overhead, making these methods more practical and scalable. However,
condition (6.2) requires that the set Q be bounded, and it also necessitates the existence of
the gradient at all points, as it must be compared with the approximate gradient. This creates
a need to address these limitations, encouraging researchers to propose a new, more suitable
definition of inexactness.

Further, paper [115] considers the case where h is the indicator function of a convex set Q and
F is a convex function, and introduces the so-called inexact first-order (δ, L)-oracle for F , i.e.,
for any y ∈ Q one can compute an inexact oracle consisting of a pair (Fδ,L(y), gδ,L(y)) such that:

0 ≤ Fδ,L(x)−
(
Fδ,L(y) + 〈gδ,L(y), x− y〉

)
≤ L

2
‖x− y‖2 + δ ∀x ∈ Q. (6.3)

It has been shown that when f is smooth, condition (6.2) implies to condition (6.3) (refer to Sec-
tion 7 in [115]). Then, [115] introduces (fast) inexact first-order methods based on gδ,L(y) infor-
mation and derives asymptotic convergence in function values of order O

(
1
k + δ

)
or O

(
1
k2

+ kδ
)
,

respectively. One can notice that in the nonaccelerated scheme, the objective function accuracy
decreases with k and asymptotically tends to δ, while in the accelerated scheme, there is error
accumulation. Further, [117] considers problem (6.1) with domain of h bounded, and introduces
the following inexact first-order oracle:

|F (x)− Fδ,L(x)| ≤ δ, F (x)− Fδ,L(y)− 〈gδ,L(y), x− y〉 ≤
L

2
‖x− y‖2 + δ.

Under the assumptions that F is nonconvex and h is convex but with bounded domain, [117] de-
rives a sublinear rate in the squared norm of the generalized gradient mapping of order O

(
1
k + δ

)
for an inexact proximal gradient method based on gδ,L(y) information. For a clearer grasp of
this inexact framework, let us illustrate with an example where such an occurrence arises.

Example 6.1.1. Let f be a convex differentiable function and the derivative is L-Lipschitz
continuous. Suppose that at each point x, obtaining the gradient ∇f(x) either isn’t available or
is challenging to compute directly. However, we can compute an approximation of it, denoted
as g∆(x), satisfying the following conditions:

‖∇f(x)− g∆(x)‖ ≤ ∆,
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where ∆ is a positive constant. Let’s demonstrate how this scenario fits into the inexact def-
initions provided in (6.2) and (6.3). Indeed, by employing the Cauchy-Schwarz inequality, we
obtain the following for all x, y, z ∈ Q:

〈g∆(x)−∇f(x), y − z〉 ≤ ‖g∆(x)−∇f(x)‖‖y − z‖ ≤ ∆ diam(Q).

This implies that inequality (6.2) holds with δ = ∆ diamQ and ∇̃F (x) = g∆(x), provided that
Q is bounded. Further, using the smoothness property of f , we get:

f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L

2
‖y − x‖2.

This implies that:

f(y)− f(x)− 〈g∆(x), y − x〉+ 〈g∆(x)−∇f(x), y − x〉 ≤
L

2
‖y − x‖2.

Thus:

f(y)− f(x)− 〈g∆(x), y − x〉 ≤
L

2
‖y − x‖2 + ‖∇f(x)− g∆(x)‖ ‖y − x‖

≤ L

2
‖y − x‖2 +∆‖y − x‖

≤ L

2
‖y − x‖2 +∆ diam(Q).

Further, from the convexity of f , we get:

f(y) ≥ f(x) + 〈∇f(x), y − x〉
≥ f(x) + 〈g∆(x), y − x〉 −∆‖y − x‖
≥ f(x)−∆ diam(Q) + 〈g∆(x), y − x〉.

Hence, inequality (6.3) holds with L = Lf , gL,δ(x) = g∆(x), fδ,L(x) = f(x) − ∆ diam(Q) and
δ = ∆ diam(Q), provided that the set Q is bounded.

Hence, drawing from this example, the preceding results offer convergence rates under the as-
sumption of the boundedness of the domain of f (or equivalently, of the set Q). An open
question arises: Can we modify the previous definitions of inexact first-order oracles to encom-
pass both convex and nonconvex settings, thereby improving the convergence results? Can we
do so without assuming the boundedness of the domain, as exemplified in Example 6.1.1? In
essence, is it possible whether a general inexact oracle can be defined to bridge the gap between
an exact oracle (providing exact gradient information) and the existing inexact first-order oracle
definitions found in the literature [115, 117]?.

In this chapter we answer to these questions positively for both convex and nonconvex problems,
introducing a suitable definition of inexactness for a first-order oracle for F involving some
degree 0 ≤ q < 2, which consist in multiplying the constant δ in (6.3) with quantity ‖x − y‖q
(see Definition 6.2.1).

6.2 Inexact first-order oracle of degree q

In this section, we introduce our new inexact first-order oracle of degree 0 ≤ q < 2 and provide
some nontrivial examples that fit into our framework. Our oracle can deal with general functions
(possibly with unbounded domain), unlike the previous results in [115, 117], but requires exact
zero-order information.
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Definition 6.2.1. The function F is equipped with an inexact first-order (δ, L)-oracle of degree
q∈ [0, 2) if for any y∈dom f one can compute gδ,L,q(y) ∈ E∗ such that:

F (x)− (F (y) + 〈gδ,L,q(y), x− y〉) ≤
L

2
‖x− y‖2 + δ‖x− y‖q ∀x ∈ dom f. (6.4)

To the best of our knowledge this definition of a first-order inexact oracle is new. The motivation
behind this definition is to introduce a versatile inexact first-order oracle framework that bridges
the gap between exact oracle (exact gradient information, i.e., q = 2) and the existing inexact
first-order oracle definitions found in the literature (i.e., q = 0). More specifically, when q =
2, Definition 6.2.1 aligns with established results for smooth functions under exact gradient
information, while when q = 0, our definition has been previously explored in the literature,
see [115, 117]. Next, we provide several examples that satisfy Definition 6.2.1 naturally, and
then we provide theoretical results showing the advantages of this new inexact oracle over the
existing ones from the literature.

Example 6.2.2. (Smooth function with inexact first-order oracle). Let F be differentiable
and its gradient be Lipschitz continuous with constant LF over dom f . Assume that for any
x ∈ dom f , one can compute g∆,LF

(x), an approximation of the gradient ∇F (x) satisfying:

‖∇F (x)− g∆,LF
(x)‖ ≤ ∆. (6.5)

Then, F is equipped with an (δ, L)-oracle of degree q = 1 as in Definition 6.2.1, with δ = ∆,
L = LF , and gδ,L,1(x) = g∆,LF

(x).

Proof. Indeed, since F is LF -smooth, we get:

F (y)− F (x)− 〈∇F (x), y − x〉 ≤ LF

2
‖y − x‖2.

Implies that:

F (x)−F (y)−〈g∆,LF ,q(y), x−y〉+〈g∆,LF ,q(y)−∇f(y), x−y〉 ≤
LF

2
‖x− y‖2.

Thus:

F (y)− F (x)− 〈g∆,LF
(x), y − x〉 ≤ LF

2
‖y − x‖2 + ‖∇F (x)− g∆,LF

(x)‖ ‖y − x‖

≤ LF

2
‖y − x‖2 +∆‖y − x‖.

which completes our statement. ■

Finite sum optimization problems appear widely in machine learning [17] and deal with an
objective F (x) :=

∑N
i=1 Fi(x), where N is possibly large. In the stochastic setting, we sample

stochastic derivatives at each iteration in order to form a mini-batch approximation for the
gradient of F . If we define:

gS(x) =
1

|S|
∑
j∈S
∇Fi(x), (6.6)

where S is a subset of {1, . . . , N}, then condition (6.5) holds with probability at least 1 −∆ if
the batch size S satisfies |S| = O

(
∆2

L2
F
+ 1

N

)−1
(see Lemma 11 in [121]).
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Remark 15. This example has been also considered in [115, 117]. However, in these papers, δ
depends on the diameter of the domain of f , assumed to be bounded. Our inexact oracle is
more general and doesn’t require boundedness of the domain of f , i.e., in our case δ = ∆, while
in [115, 117], δ = 2∆D, where D is the diameter of the domain of f . Hence, our definition is
more natural in this setting.

Example 6.2.3. (Computations at shifted points) Let F be differentiable with Lipschitz con-
tinuous gradient with constant LF over dom f . For any x ∈ dom f we assume we can compute
the exact value of the gradient, albeit evaluated at a shifted point x̄, different from x and sat-
isfying ‖x − x̄‖ ≤ ∆. Then, F is equipped with a (δ, L)-oracle of degree q = 1 as in Definition
6.2.1, with gδ,L,1(x) = ∇F (x̄), L = LF and δ = LF∆. Indeed, since F is LF smooth, we have:

F (y) ≤ F (x) + 〈∇F (x), y − x〉+ LF

2
‖y − x‖2,

= F (x) + 〈∇F (x̄), y − x〉+ 〈∇F (x)−∇F (x̄), y − x〉+ LF

2
‖y − x‖2,

≤ F (x) + 〈∇F (x̄), y − x〉+ LF

2
‖y − x‖2 + LF ‖x− x̄‖‖y − x‖,

where the second inequality follows from the Cauchy-Schwartz inequality. This proves our
statement.

Remark 16. This example was also considered in [115, 117], with the corresponding (δ, L)-oracle
having δ = LF∆

2, L = 2LF and q = 0. Note that our L in Definition 6.2.1 is twice smaller than
the corresponding L in [115, 117].

Example 6.2.4. (Accuracy measures for approximate solutions) Let us consider a F that is LF

smooth, given by:

F (x) = max
u∈U

ψ(x, u) := max
u∈U

G(u) + 〈Au, x〉,

where A : E→ E∗ is a linear operator and G(·) is a differentiable strongly concave function with
concavity parameter κ > 0. Under these assumptions, the maximization problem maxu∈U ψ(x, u)
has only one optimal solution u∗(x) for a given x. Moreover, F is convex and smooth with
Lipschitz continuous gradient ∇F (x) = ∇xψ(x, u

∗(x)) = Au∗(x) having Lipschitz constant
LF = 1

κ‖A‖
2 [115]. Suppose that for any x ∈ dom f , one can compute ux an approximate

minimizer of ψ(x, u) such that ‖u∗(x) − ux‖ ≤ ∆. Then, F is equipped with (δ, L)-oracle of
degree q = 1 with δ = ∆‖A‖, L = LF and gδ,L,1(x) = Aux. Indeed, since F has Lipschitz-
continuous gradient, we have:

F (y) ≤ F (x) + 〈∇F (x), y − x〉+ LF

2
‖y − x‖2,

= F (x) + 〈∇xψ(x, u
∗(x)), y − x〉+ LF

2
‖y − x‖2,

= F (x) + 〈Au∗(x), y − x〉+ LF

2
‖y − x‖2,

= F (x) + 〈Aux, y − x〉+ 〈A(u∗(x)− ux), y − x〉+
LF

2
‖y − x‖2,

≤ F (x) + 〈Aux, y − x〉+ ‖A‖‖u∗(x)− ux‖‖y − x‖+
LF

2
‖y − x‖2,

≤ F (x) + 〈Aux, y − x〉+∆‖A‖‖y − x‖+ LF

2
‖y − x‖2.

Hence, our statement follows.
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Remark 17. This example was also considered in [115] with the corresponding (δ, L)− oracle
having δ = ∆, L = 2LF and q = 0, while in our case, we have δ = ∆‖A‖, L = LF and q = 1.

Example 6.2.5. (Weak level of smoothness) Let F be a proper lower semicontinuous function
with the subdifferential ∂F (x) nonempty for all x ∈ dom f . Assume that F satisfies the following
Hölder condition with Hν <∞:

‖g(x)− g(y)‖ ≤ Hν‖y − x‖ν , (6.7)

for all g(x) ∈ ∂F (x), g(y) ∈ ∂F (y), where x, y ∈ dom f and ν ∈ [0, 1]. Then, F is equipped with
(δ, L)-oracle of degree q as in Definition 6.2.1, with gδ,L,q(x) ∈ ∂F (x), for any arbitrary degree
0 ≤ q < 1 + ν and any accuracy δ > 0, and a constant L depending on δ given by:

L(δ) =
1 + ν − q
2− q

(
Hν

1 + ν

) 2−q
1+ν−q

(
1− ν
δ(2− q)

) 1−ν
1+ν−q

.

Indeed, we have from Hölder condition [38]:

F (x)− F (y)− 〈g(y), x− y〉 ≤ Hν

1 + ν
‖x− y‖1+ν .

For any given δ > 0, we compute L(δ) such that the following inequality holds:

Hν

1 + ν
‖x− y‖1+ν ≤ L(δ)

2
‖x− y‖2 + δ‖x− y‖q.

Denote r = ‖x−y‖ and let λ ∈ (0, 1). Using the weighted arithmetic-geometric mean inequality
with α1 = λ and α2 = 1− λ, we have:

L(δ)r2

2
+ δrq = λ

L(δ)

2λ
r2 + (1− λ) δ

1− λ
rq

≥
(
L(δ)

2λ
r2
)λ( δ

1−λ
rq
)1−λ

=

(
L(δ)

2λ

)λ( δ

1−λ

)1−λ
r2λ+q(1−λ).

Thus Hν
1+ν =

(
L(δ)
2λ

)λ (
δ

1−λ

)1−λ
and 1+ν = 2λ+q(1−λ). It follows that λ = 1+ν−q

2−q , 1−λ = 1−ν
2−q

and 1
λ − 1 = 1−ν

1+ν−q . Hence, for a given positive δ one may choose:

L(δ)=2λ

(
Hν

1+ν

) 1
λ
(
1−λ
δ

) 1
λ
−1

=
1+ν−q
2−q

(
Hν

1+ν

) 2−q
1+ν−q

(
1−ν
δ(2−q)

) 1−ν
1+ν−q

,

and this is our statement. Note that if ν > 0, then we have ∂F (x) = {∇F (x)} for all x and
thus F is differentiable. Indeed, letting y = x in (6.7) we get: g(x) = ḡ(x). This implies that
the set ∂F (x) has a single element, thus F is differentiable. This example covers large classes
of functions. Indeed, when ν = 1, we get functions with Lipschitz-continuous subgradient. For
ν < 1, we get a weaker level of smoothness. In particular, when ν = 0, we obtain functions
whose subgradients have bounded variation. Clearly, the latter class includes functions whose
subgradients are uniformly bounded by M (just take H0 = 2M). It also covers functions
smoothed by local averaging and Moreau–Yosida regularization (see [115] for more details). We
believe that the readers may find other examples that satisfy our Definition 6.2.1 of an inexact
first-order oracle of degree q.
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6.3 Inexact proximal gradient methods

In this section, we introduce an inexact proximal gradient method based on the previous inexact
oracle definition for solving (non)convex composite minimization problems (6.1). We derive
complexity estimates for this algorithm and study the dependence between the accuracy of the
oracle and the desired accuracy of the gradient or of the objective function. Hence, we consider
the following Inexact Proximal Gradient Method (I-PGM). Note that Algorithm 1 is an inexact

Algorithm 6 Inexact proximal gradient method (I-PGM)

1. Given x0 ∈ domh and 0 ≤ q < 2.

For k ≥ 0 do:

2. Choose δk, Lk and αk. Obtain gδk,Lk,q(xk).

3. Compute xk+1 = proxαkh
(xk − αkgδk,Lk,q(xk)).

proximal gradient method, where the inexactness comes from the approximate computation of
the (sub)gradient of F , denoted gδk,Lk,q(xk). In the next sections we analyze the convergence
behavior of this algorithm when gδk,Lk,q(xk) satisfies Definition 6.2.1.

6.3.1 Nonconvex convergence analysis

In this section we consider a nonconvex function F that admits an inexact first-order (δ, L)-
oracle of degree q as in Definition 6.2.1. Using this definition and inequality (2.10), for all ρ > 0
we get the following upper bound:

F (x)−
(
F (y) + 〈gδ,L,q(y), x− y〉

)
≤ L+ qρ

2
‖x− y‖2 + (2− q)δ

2
2−q

2ρ
q

2−q

. (6.8)

This inequality will play a key role in our convergence analysis. We define the gradient mapping
at iteration k as gδk,Lk,q(xk)+pk+1, where pk+1 ∈ ∂h(xk+1) such that gk+pk+1 = − 1

αk
(xk+1−xk)

(i.e., pk+1 is the subgradient of h at xk+1 coming from the optimality condition of the prox at
xk). Next we analyze the global convergence of I-PGM in the norm of the gradient mapping.
We have the following theorem:

Theorem 6.3.1. Let F be a nonconvex function admitting a (δk, Lk)-oracle of degree q ∈ [0, 2)
at each iteration k, with δk ≥ 0 and Lk > 0 for all k ≥ 0. Let (xk)k≥0 be generated by I-
PGM and assume that αk ≤ 1

Lk+qρ , for some arbitrary parameter ρ > 0. Then, there exists
pk+1 ∈ ∂h(xk+1) such that:

k∑
j=0

αj‖gδj ,Lj ,q(xj) + pj+1‖2 ≤ f(x0)− f∞ +

∑k
j=0(2− q)δ

2
2−q

j

2ρ
q

2−q

. (6.9)

Proof. Denote gδk,Lk,q(xk) = gk. From the optimality conditions of the proximal operator defin-
ing xk+1, we have:

gk + pk+1 = −
1

αk
(xk+1 − xk).
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Further, from inequality (6.8), we get:

F (xk+1) ≤ F (xk) + 〈gk, xk+1 − xk〉+
Lk + qρ

2
‖xk+1 − xk‖2 +

(2− q)δ
2

2−q

k

2ρ
q

2−q

= F (xk)+〈gk+pk+1, xk+1−xk〉−〈pk+1, xk+1−xk〉+
Lk + qρ

2
‖xk+1−xk‖2 +

(2− q)δ
2

2−q
k

2ρ
q

2−q

≤ F (xk)−αk

(
1− (Lk+qρ)αk

2

)
‖gk+pk+1‖2+h(xk)−h(xk+1)+

(2−q)δ
2

2−q

k

2ρ
q

2−q

≤ F (xk)−
αk

2
‖gk + pk+1‖2 + h(xk)− h(xk+1) +

(2−q)δ
2

2−q

k

2ρ
q

2−q

,

where the second inequality follows from the convexity of h and pk+1 ∈ ∂h(xk+1), and the last
inequality follows from the definition of αk. Hence, we get that:

f(xk+1) ≤ f(xk)−
αk

2
‖gk+pk+1‖2 +

(2− q)δ
2

2−q

k

2ρ
q

2−q

.

Summing up this inequality from j = 0 to j = k and using the fact that f(xk+1) ≥ f∞, where
recall that f∞ denotes a finite lower bound for the objective function, we get:

k∑
j=0

αj

2
‖gj + pj+1‖2 ≤ f(x0)− f(xk+1) +

∑k
j=0(2− q)δ

2
2−q

j

2ρ
q

2−q

≤ f(x0)− f∞ +

∑k
j=0(2− q)δ

2
2−q

j

2ρ
q

2−q

.

Hence, our statement follows. ■

For a particular choice of the algorithm parameters, we can get simpler convergence estimates.

Theorem 6.3.2. Let the assumptions of Theorem 4.3.4 hold and consider for all k ≥ 0:

Lk = L, δk =
δ

(k + 1)
β(2−q)

2

, αk =
1

(L+ qρ)(k + 1)ζ
, where β, ζ ∈ [0, 1).

Then, we have:

min
j=0:k
‖gj + pj+1‖2 ≤

2(L+qρ)(f(x0)−f∞)

(1−ζ)(k + 1)1−ζ
+

(2−q)(L+qρ)δ
2

2−q

(1− ζ)(1− β)ρ
q

2−q (k + 1)β−ζ
. (6.10)

Proof. Taking the minimum in the inequality (6.9), we get:

min
j=0:k
‖gj + pj+1‖2 ≤

2(f(x0)− f∞)∑k
j=0 αj

+

∑k
j=0(2− q)δ

2
2−q

j

ρ
q

2−q
∑k−1

j=0 αj

.

Further, since we have:

k∑
j=0

1

(L+ qρ)(j + 1)ζ
=

k+1∑
j=1

1

(L+ qρ)jζ
,
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and similarly for δj , we get:

min
j=0:k
‖gj + pj+1‖2 ≤

2(L+ qρ)(f(x0)− f∞)∑k+1
j=1

1
jζ

+
(2− q)(L+ qρ)δ

2
2−q
∑k+1

j=1
1
jβ

ρ
q

2−q
∑k+1

j=1
1
jζ

.

Since 0 ≤ ζ < 1, then we have for all k ≥ 0:

(1− ζ)(k + 1)1−ζ ≤ (k + 2)1−ζ − 1

1− ζ
=

∫ k+2

1

1

uζ
du

≤
k+1∑
j=1

1

jζ
≤
∫ k+1

1

(
1

uζ

)
du+ 1 ≤ (k + 1)1−ζ

1− ζ
.

It follows that for all k ≥ 0:

min
j=0:k
‖gj + pj+1‖2 ≤

2(L+qρ)(f(x0)−f∞)

(1−ζ)(k + 1)1−ζ
+

(2−q)(L+qρ)δ
2

2−q

(1− ζ)(1− β)ρ
q

2−q (k + 1)β−ζ
.

Hence, our statement follows. ■

Let us analyze in more details the bound from Theorem 6.3.2. For simplicity, consider the case
q = 1 (see Example 6.2.2). Then, we have:

min
j=0:k
‖gj + pj+1‖2 ≤

2(L+ ρ)(f(x0)− f∞)

(1− ζ)(k + 1)1−ζ
+

(L+ ρ)δ2

ρ(1− ζ)(1− β)(k + 1)β−ζ

=
2L(f(x0)− f∞)

(1− ζ)(k + 1)1−ζ
+

2ρ(f(x0)− f∞)

(1− ζ)(k + 1)1−ζ

+
Lδ2

ρ(1− ζ)(1− β)(k + 1)β−ζ
+

δ2

(1− ζ)(1− β)(k + 1)β−ζ
.

Denote ∆0 := f(x0) − f∞. Since parameter ρ > 0 is a degree of freedom, minimizing the right
hand side of the previous relation w.r.t. ρ we get an optimal choice ρ = δ

√
L√

2∆0(1−β)
(k + 1)

1−β
2 .

Hence, replacing this expression for ρ in the last inequality, we get:

min
j=0:k
‖gj + pj+1‖2 ≤

2L∆0

(1− ζ)(k + 1)1−ζ
+

2δ
√
2L∆0

((1− ζ)
√
1− β)(k + 1)

1+β
2

−ζ

+
δ2

(1− ζ)(1− β)(k + 1)β−ζ
.

This bound is of order O
(

1
k1−ζ + δ

k
1+β
2 −ζ

+ δ2

kβ−ζ

)
. Note that, if β > ζ, the gradient mapping

minj=0:k‖gj + pj+1‖2 converges regardless of the accuracy of the oracle δ and the convergence
rate is of order O(k−min(1−ζ,β−ζ)) (since we always have 1+β

2 − ζ ≥ β − ζ). Note that this is
not the case for q = 0, where the convergence rate is of order O

(
1
k + δ

)
, see also [117]. The

following corollary provides a convergence rate for general q, but for a particular choice of the
parameters ζ and β.

Corollary 6.3.3. Let the assumptions of Theorem 6.3.2 hold and let assume that ζ = β = 0.
Then, we have the following convergence rates:
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1. If 0 ≤ q < 2 and ρ = L, then δk = δ, αk = 1
L+qL and

min
j=0:k
‖gj + pj+1‖2 ≤

2(q + 1)L∆0

k + 1
+ (q + 1)(2− q)L

2−2q
2−q δ

2
2−q ∀k ≥ 0.

2. If 1 ≤ q < 2, fixing the number of iterations k and taking ρ = L
2−q
2 δ

(2∆0)
2−q
2

(k + 1)
2−q
2 , then

δj = δ, αj =
1

L+qρ for all j = 0 : k and

min
j=0:k
‖gj + pj+1‖2

≤ 2L∆0

k + 1
+
L

2−q
2 (2∆0)

q
2 δ+(2− q)δL1− q

2 (2∆0)
q
2

(k + 1)
q
2

+
q(2− q)δ2L1−q(2∆0)

q−1

(k + 1)q−1
.

Proof. Replacing ζ = β = 0 in inequality (6.10), we get:

min
j=0:k
‖gj + pj+1‖2 ≤

2(L+ qρ)∆0

k + 1
+

(2− q)(L+ qρ)δ
2

2−q

ρ
q

2−q

=
2L∆0

k + 1
+

2qρ∆0

k + 1
+

(2− q)Lδ
2

2−q

ρ
q

2−q

+
q(2− q)δ

2
2−q

ρ
2q−2
2−q

.

If 0 ≤ q < 2, then taking ρ = L in the last inequality we get the first statement. Further,
if 1 ≤ q < 2, minimizing over ρ the second and the third terms of the right side of the last
inequality yields the optimal choice ρ = L

2−q
2 δ

(2∆0)
2−q
2

(k + 1)
2−q
2 . Replacing this expression for ρ in

the last inequality, we get:

min
j=0:k
‖gj + pj+1‖2 ≤

2L∆0

k + 1
+
L

2−q
2 (2∆0)

q
2 δ+(2− q)δL1− q

2 (2∆0)
q
2

(k + 1)
q
2

+
q(2− q)δ2L1−q(2∆0)

q−1

(k + 1)q−1
,

and this is the second statement. ■

Remark 18. Let us analyse in more details this convergence rate for Example 6.2.2. For q = 0,
we have that δ = 2D∆ and L = LF , where D is the diameter of dom f . Hence, the convergence
rate in this case becomes:

min
j=0:k
‖gj + pj+1‖2 ≤

4LF∆0

k + 1
+ 4DLF∆.

On the other hand, for q = 1, we have δ = ∆ and L = LF . Thus, we get the following
convergence rate:

min
j=0:k
‖gj + pj+1‖2 ≤

4LF∆0

k + 1
+ 2∆2.

Hence, if we want to achieve minj=0:k‖gj + pj+1‖2 ≤ ϵ, for q = 0 we impose 4DLF∆ ≤ ϵ/2,
which implies that one needs to compute an approximate gradient with accuracy ∆ = O(ϵ),
while for q = 1 we impose 2∆2 ≤ ϵ/2, meaning that one only needs to compute an approximate
gradient with accuracy ∆ = O(ϵ1/2). Hence, for this example, it is more natural to use our
inexact first-order oracle definition for q = 1 than for q = 0, since it requires less accuracy for
approximating the true gradient.

Note that in the second result of Corollary 6.3.3, the parameter ρ depends on the difference
∆0 = f(x0)−f∞, and, usually, f∞ is unknown. In practice, we can approximate ∆0 by using an
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estimate for f∞ in place of its exact value. For example, one can consider ∆k
0 = f(x0) − fkbest,

where fkbest = minj=0:k f(xj) − εk for some εk ≥ 0, see [122]. Under this setting, the sequence
εk and the iterates of I-PGM corresponding to the case of the second result of Corollary 6.3.3
are updated as follows:

Algorithm 7 Adaptive I-PGM algorithm when f∞ is unknown

1. Given ε0 > 0 and f0best = f(x0)− ε0.
For k ≥ 0 do:

2. Compute xk+1 by I-PGM with ∆k
0 = f(x0)− fkbest.

While f(xk+1) < fkbest

a) Set εk = 2× εk and update fkbest = min
j=0:k

f(xj)− εk.

b) Re-compute xk+1 by I-PGM method.
End While

3. Set εk+1 =
εk
2 .

This process is well defined, i.e., the ”while” step finishes in a finite number of iterations. Indeed,
one can observe that if εk ≥ minj=0:k f(xj) − f∞ then εk ≥ minj=0:k f(xj) − f(xk+1), which
implies that f(xk+1) ≥ fkbest. Additionally, we have εk ≤ 2(minj=0:k f(xj) − f∞) for all k ≥ 0.
Hence, we can still derive a convergence rate for the second result of Corollary 6.3.3 using this
adaptive process since one can observe that:

f(x0)− f(xk+1) ≤ f(x0)− fkbest = ∆k
0.

Additionally, we have the following bound on ∆k
0:

∆k
0 ≤ f(x0)− min

j=0:k
f(xj) + 2

(
min
j=0:k

f(xj)− f∞
)

= (f(x0)− f∞) +

(
min
j=0:k

f(xj)− f∞
)
.

Hence, we can replace in (6.9) the difference ∆0 = f(x0) − f∞ with ∆k
0 and then the second

statement of Corollary 6.3.3 remains valid with ∆k
0 instead of ∆0.

Remark 19. We observe that for q = 0 we recover the same convergence rate as in [117]. However,
our result does not require the boundedness of the domain of f , while in [117] the rate depends
explicitly of the diameter of the domain of f . Moreover, for q > 0 our convergence bounds are
better than in [117], i.e., the coefficients of the terms in δ are either smaller or even tend to zero,
while in [117] they are always constant.

Further, let us consider the case of Example 6.2.5, where F satisfies the Hölder condition with
constant ν ∈ (0, 1] and β = ζ = 0. We have shown that for any δ > 0 this class of functions can
be equipped with a (δ, L)-oracle of degree q < 1 + ν with L = C(Hν , q)

(
1
δ

) 1−ν
1+ν−q (see Example

6.2.5 for the expression of the constant C(Hν , q)). In view of the first result of Corollary 6.3.3,
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after k iterations, we have:

min
j=0:k
‖gj + pj+1‖2 ≤

2(q + 1)∆0L

k + 1
+ (q + 1)(2− q)L

2−2q
2−q δ

2
2−q

=
C1

k + 1

(
1

δ

) 1−ν
1+ν−q

+ C2

(
1

δ

) (1−ν)(2−2q)
(1+ν−q)(2−q)

δ
2

2−q

=
C1

k + 1
δ
− 1−ν

1+ν−q + C2δ
− (1−ν)(2−2q)

(1+ν−q)(2−q)
+ 2

2−q

=
C1

k + 1
δ
− 1−ν

1+ν−q + C2δ
2ν

1+ν−q ,

where C1 := 2(q+1)∆0C(Hν , q) and C2 = (q+1)(2− q)C(Hν , q)
2−2q
2−q . Since in this example we

can choose δ, its optimal value can be computed from the following equation:

− C1(1− ν)
(1 + ν − q)

1

(k + 1)
δ

q−2
1+ν−q +

2νC2

1 + ν − q
δ

−1+ν+q
1+ν−q = 0.

Hence, we get:

δ = C3(k + 1)−
1+ν−q
1+ν ,

where C3 =
(

2νC2
(1−ν)C1

)− 1+ν−q
1+ν . Replacing this optimal choice of δ in the last inequality, we get:

min
j=0:k
‖gj + pj+1‖2 ≤ C1C3

(
(k + 1)−(1−

1−ν
1+ν )

)
+ C2C3

(
(k + 1)−

2ν
1+ν

)
=
C3(C1 + C2)

(k + 1)
2ν
1+ν

.

Remark 20. Note that our convergence rate of order O(k−
2ν
1+ν ) for Algorithm 1 (I-PGM) for

nonconvex problems having the first term F with a Hölder continuous gradient (Example 6.2.5)
recovers the rate obtained in [117] under the same settings.

Finally, let us now show that when the gradient mapping is small enough, i.e., ‖gk + pk+1‖ is
small, xk+1 is a good approximation for a stationary point of problem (6.1). Note that any
choice αk ≤ 1

L+qρk
yields:

‖xk+1 − xk‖ ≤
1

L

∥∥∥∥ 1

αk
(xk+1 − xk)

∥∥∥∥ =
1

L
‖gk + pk+1‖.

Hence, if the gradient mapping is small, then the norm ‖xk+1 − xk‖ is also small.

Theorem 6.3.4. Let (xk)k≥0 be generated by I-PGM and let pk+1 ∈ ∂h(xk+1). Assume that we
are in the case of Example 6.2.2. Then, we have:

dist(0, ∂f(xk+1)) ≤ ‖g∆,LF ,q(xk) + pk+1‖+ LF ‖xk+1 − xk‖+∆.

Further, if we are in the case of Example 6.2.5, then we have:

dist(0, ∂f(xk+1)) ≤ ‖g(xk) + pk+1‖+Hν‖xk+1 − xk‖ν , g(xk) ∈ ∂F (xk).

Proof. Let us consider Example 6.2.2, where F is LF smooth and h is convex. Since ∇F (xk+1)+
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pk+1 ∈ ∂f(xk+1), then we have:

‖∇F (xk+1) + pk+1‖
≤ ‖g∆,LF ,q(xk) + pk+1‖+ ‖∇F (xk)− g∆,LF ,q(xk)‖+ ‖∇F (xk+1)−∇F (xk)‖
≤ ‖g∆,LF ,q(xk) + pk+1‖+∆+ LF ‖xk+1 − xk‖.

Further, let us assume that we are in the case of Example 6.2.5. Then, we have g(xk) ∈ ∂F (xk).
Further, let g(xk+1) ∈ ∂F (xk+1), then we get:

‖g(xk+1) + pk+1‖ ≤ ‖g(xk) + pk+1‖+ ‖g(xk+1)− g(xk)‖
≤ ‖g(xk) + pk+1‖+Hν‖xk+1 − xk‖ν .

This proves our statements. ■

Thus, for ‖ 1
αk

(xk+1 − xk)‖ = ‖gk + pk+1‖ small, xk+1 is an approximate stationary point of
problem (6.1). Note that our convergence rates from this section are better as q increases, i.e.,
the terms depending on δ are smaller for q > 0 than for q = 0. In particular, the power of δ in
the convergence estimate is higher for q ∈ (0, 1) than for q = 0, while for q ≥ 1 the coefficients
of δ even diminish with k. Hence, it is beneficial to have an inexact first-order oracle of degree
q > 0, as this allows us to work with less accurate approximation of the (sub)gradient of the
nonconvex function F than for q = 0.

6.3.2 Convex convergence analysis

In this section, we analyze the convergence rate of I-PGM for problem (6.1), where F is now
assumed to be a convex function. By adding extra information to the oracle (6.4), we consider
the following modification of Definition 6.2.1:

Definition 6.3.5. Let F be convex. Then it is equipped with an inexact first-order (δ, L)-oracle
of degree 0 ≤ q < 2 if for any y ∈ dom f we can compute a vector gδ,L,q(y) such that:

0 ≤ F (x)− (F (y) + 〈gδ,L,q(y), x− y〉) ≤
L

2
‖x− y‖2 + δ‖y − x‖q ∀x ∈ dom f. (6.11)

Note that Example 6.2.5 satisfies this definition. In (6.11), the zero-order information is con-
sidered to be exact. This is not the case in [115], which considers the particular choice q = 0 .
Further, the first-order information gδ,L,q is a subgradient of f at y in (6.11), while in [115] it
is a δ-subgradient. However, using this inexact first-order oracle of degree q, I-PGM provides
better rates compared to [115]. From (6.11) and (2.10), we get:

0 ≤ F (x)− (F (y) + 〈gδ,L,q(y), x− y〉) ≤
L+ qρ

2
‖x− y‖2 + (2− q)δ

2
2−q
q

2ρ
q

2−q

, (6.12)

for all ρ > 0. Next, we analyze the convergence rate of I-PGM in the convex setting. We have
the following convergence rate:
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Corollary 6.3.6. Let F be a convex function admitting a (δ, L)-oracle of degree q ∈ [0, 2) (see
Definition 6.3.5). Let (xk)k≥0 be generated by I-PGM and assume that αk = 1

L+qρ , with ρ > 0.

Define x̂k =
∑k

i=0 xi+1

k+1 and R = ‖x0 − x∗‖. Then, we have:

f(x̂k)− f∗ ≤
(L+ qρ)R2

2k
+

(2− q)δ
2

2−q

2ρ
q

2−q

. (6.13)

Proof. It follows from (6.12) and Theorem 2 in [115]. ■

Since we have the freedom of choosing ρ, let us minimize the right-hand side of (6.13) over ρ.

Then, ρ must satisfy qR2

2k −
qδ

2
2−q

2 ρ
−2
2−q = 0. Thus, the optimal choice is ρ = δ

R2−q k
2−q
2 . Finally,

fixing the number of iterations k and replacing this expression in equation (6.13), we get:

f(x̂k)− f∗ ≤
LR2

2k
+ δ

(2 + q)Rq

2k
q
2

.

One can notice that our rate in function values is of order O(k−1 + δk−
q
2 ), while in [115] the

rate is of order O(k−1 + δ). Hence, when q > 0, regardless of the accuracy of the oracle, our
second term diminishes, while in [115] it remains constant. Hence, our new definition of inexact
oracle of degree q, Definition 6.3.5, is also beneficial in the convex case when analysing proximal
gradient type methods, i.e., large q yields better rates.

We also explore an extension of the fast inexact projected gradient method from [115], where
the projection step is replaced by a proximal step with respect to the function h, as described in
[8]. This extended method is referred to as FI-PGM. It’s important to note that the inexactness
in FI-PGM arises from the approximate computation of the (sub)gradient of F , specifically
gδk,Lk,q(xk), as defined in Definition 6.3.5. Let (θk)k≥0 represent a sequence that satisfies the
following conditions:

θ0 ∈ (0, 1],
θ2k+1

Lk+1
≤ Ak+1 :=

k+1∑
i=0

θi
Li
∀k ≥ 0. (6.14)

Then, the fast inexact proximal gradient method (FI-PGM) is as follows:

Algorithm 8 Fast inexact proximal gradient method (FI-PGM)

1. Given x0 ∈ domh, θ0 ∈ (0, 1] and 0 ≤ q < 2.

For k ≥ 0 do:

2. Choose δk, Lk and αk. Obtain gδk,Lk,q(xk).

3. Compute yk = proxαkh
(xk − αkgδk,Lk,q(xk)).

4. Compute zk = argmin 1
2‖x− x0‖

2 +
∑k

i=0
θi
Li
〈gδk,Lk,q(xi), x− xi〉+ h(x).

5. Choose θk+1 satisfying condition (6.14) and compute Ak+1 =
∑k+1

i=0
θi
Li
.

6. Compute xk+1 = τkyk + (1− τk)zk using τk =
θk+1

Ak+1Lk+1
.

Using a similar proof as in [115], we get the following convergence rate for FI-PGM algorithm:
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Corollary 6.3.7. Let F satisfy the assumptions of Lemma 6.3.6 and (yk)k≥0 be generated by
FI-PGM. Then, for all ρ > 0, we have the following rate:

f(yk)− f∗ ≤
4(L+ qρ)R2

(k + 1)(k + 2)
+

(k + 3)(2− q)δ
2

2−q

2ρ
q

2−q

. (6.15)

Proof. The proof follows from (6.12) and Theorem 4 in [115]. ■

The optimal ρ in the right hand side of inequality (6.15) is

ρ∗ =

(
(k + 1)(k + 2)(k + 3)

) 2−q
2

(8R2)
2−q
2

δ.

Further, replacing ρ with its optimal value in the inequality (6.15), we get

f(yk)− f∗ ≤
4LR2

(k + 1)(k + 2)
+

q8
q
2Rq(k + 3)

2((k + 1)(k + 2)(k + 3))
q
2

δ +
(2− q)8

q
2Rq(k + 3)

2((k + 1)(k + 2)(k + 3))
q
2

δ

=
4LR2

(k + 1)(k + 2)
+

8
q
2Rq(k + 3)

((k + 1)(k + 2)(k + 3))
q
2

δ.

= O
(
LR2

k2

)
+O

(
Rq

k
3q
2
−1
δ

)
.

Hence, if q > 2
3 , then FI-PGM doesn’t have error accumulation under our inexact oracle as

the rate is of order O
(
k−2 + δk1−

3q
2

)
, while in [115] the FI-PGM scheme always displays error

accumulation, as the convergence rate is of order O(k−2 + δk). Therefore, the same conclusion
holds as for I-PGM, i.e., for the FI-PGM scheme in the convex setting it is beneficial to have an
inexact first-order oracle with large degree q.

Remark 21. In our Definition 6.2.1 we have considered exact zero-order information. However,
it is possible to change this definition considering also inexact zero-order information for the
nonconvex case. More precisely, we can change Definition 6.2.1 as followsFδ0(x)− F (x) ≤ δ0,

F (x)−(Fδ0(y) + 〈gδ,L,q(y), x− y〉)≤
L

2
‖x− y‖2 + δ‖x− y‖q.

With this new definition, the convergence result in Theorem 4.3.4 becomes:

k∑
j=0

αj‖gδj ,Lj ,q(xj) + pj+1‖2 ≤ f(x0)− f∞ +

∑k
j=0(2− q)δ

2
2−q

j

2ρ
q

2−q

+
k∑

j=0

δ0.

Hence the rate in this case is also influenced by the inexactness of the zero-order information
(i.e., δ0). Note that for the convex case, the previous extension is not possible in Definition 6.3.5
when q > 0, since we must have:

0 ≤ F (x)−(Fδ0(y) + 〈gδ,L,q(y), x− y〉)≤
L

2
‖x− y‖2 + δ‖x− y‖q,

which implies for x = y that F (x) = Fδ0(x). Since we want to have consistency between
Definitions 6.2.1 and 6.3.5, we have chosen to work with the exact zero-order information in our
previous nonconvex convergence analysis.
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6.4 Numerical simulations

In this section, we evaluate the performance of I-PGM for a composite problem arising in image
restoration. Namely, we consider the following nonconvex optimization problem [123]:

min
x∈Rn

N∑
i=1

log
((
aTi x− bi

)2
+ 1
)
, (6.16)

s.t. ‖x‖1 ≤ R,

where R > 0, b ∈ RN and ai ∈ Rn, for i = 1 : N . In image restoration, b represents the noisy
blurred image and A = (a1, · · · , aN ) ∈ Rn×N is a blur operator [123]. This problem fits into our
general problem (6.1), with F (x) =

∑N
i=1 log

((
aTi x− bi

)2
+ 1
)
, which is a nonconvex function

with Lipschitz continuous gradient of constant LF :=
∑N

i=1 ‖ai‖2, and h(x) is the indicator
function of the bounded convex set {x : ‖x‖1 ≤ R}. We generate the inexact oracle by adding
normally distributed random noise δ to the true gradient, i.e., gδ,L,q(x) := ∇F (x) + δ. This is
a particular case of Example 6.2.2. However, for all x and y satisfying ‖x‖ ≤ R, ‖y‖ ≤ R, we
have the following:

δ‖x− y‖ = δ‖x− y‖1−q‖x− y‖q ≤ δ(2R)1−q‖x− y‖q.

Thus, this example satisfies Definition 6.2.1 for all q ∈ [0, 1]. We apply I-PGM for this partic-
ular example where we consider three choices for the degree q: 0, 1/2 and 1. Recall that the
convergence rate of I-PGM with constant step size is (see Corollary 6.3.3, first statement):

min
j=0:k
‖gj+pj+1‖2 ≤

2(q+1)L(f(x0)−f∗)
k + 1

+ (q+1)(2−q)L
2−2q
2−q δ

2
2−q . (6.17)

At each iteration of I-PGM we need to solve the following convex subproblem:

min
x∈Rn

F (xk) + 〈gδ,q(xk), x− xk〉+
L+ qρ

2
‖x− xk‖2, s.t. ‖x‖1 ≤ R.

This subproblem has a closed form solution (see e.g., [124]). We compare I-PGM with constants
step size αk = 1

2(LF+qρ) and ρ = LF for three choices of q = 0, 1/2, 1 and three choices of noise
norm ‖δ‖ ≤ 0.1, 1, 3, respectively. The results are given in Figure 6.4 (dotted lines), where we
plot the evolution of the error minj=0:k ‖ 1

αk
(xj+1 − xj)‖2, which corresponds to the gradient

mapping. In the same figure we also plot the theoretical bounds (6.17) for q = 0, 1/2, 1 (full
lines). Our main figures are Figure 6.1, 6.3, and 6.4, while Figure 6.2 is a subfigure (zoom) of
Figure 6.1, displaying only the first 300 iterations. Moreover, one can see in these main figures
(i.e., Figure 6.1, 6.3, and 6.4 that the behaviour of our algorithm for q = 1 is better than for
q = 1/2. Similarly, the behaviour of our algorithm for q = 1/2 is better than for q = 0. One
can observe these better behaviours after 300 iterations when the error δ is small (see Figure 6.3
and 6.4). However, when the error δ is large, we need to perform a larger number of iterations
before we can observe these behaviours, (see Figure 6.1 and 6.2). This is natural, since large
errors on the gradient approximation must have impact on the convergence speed. Hence, as
the degree q increases or the norm of the noise decreases, better accuracies for the norm of the
gradient mapping can be achieved, which supports our theoretical findings.

Moreover, from the numerical simulations, one can observe that the gap between the theoretical
and the practical bounds is large in Figure 6.3 and 6.4. We believe that this happens because, in
the convergence analysis, the theoretical bounds are derived under worst-case scenarios (i.e., the
convergence analysis must account for the worst case direction generated by the inexact first-
order oracle, while in practical implementations, which often involve randomness, one usually
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doesn’t encounter these worst-case directions). However, the simulations in Figure 6.1 show
that the gap between the theoretical bounds and the practical behavior is not too large. More
precisely, we have generated at each iteration 100 random directions and, in order to update the
new point, we have chosen the worst direction with respect to the gradient mapping (i.e., the
largest) ‖xk+1−xk‖). The results are given in Figure 6.1, where one can see that the theoretical
and practical bounds are getting closer for sufficiently large number of iterations.
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Figure 6.1: ‖δ‖ ≤ 3
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Figure 6.2: ‖δ‖ ≤ 3
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Figure 6.3: ‖δ‖ ≤ 1
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Figure 6.4: ‖δ‖ ≤ 0.1

Figure 6.5: Practical (dotted lines) and theoretical (full lines) performances of the I-PGM algo-
rithm for different choices of q and δ, with R = 4. Figure (b) represents a zoom of
the left corner from Figure (a).

6.5 Conclusions

In this chapter introduce the concept of inexact first-order oracle of degree q for a possibly
nonconvex and nonsmooth function, which naturally appears in the context of approximate
gradient, weak level of smoothness and other situations. Our definition is less conservative than
those found in the existing literature, and it can be viewed as an interpolation between fully
exact and the existing inexact first-order oracle definitions. We analyze the convergence behavior
of an inexact proximal gradient method using such an oracle for solving (non)convex composite
minimization problems. We derive complexity estimates and study the dependence between the
accuracy of the oracle and the desired accuracy of the gradient or of the objective function. Our
results show that better rates can be obtained both theoretically and in numerical simulations
when q is large.
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7 Applications

In this chapter, we test our algorithms from the previous chapters on a range of applications,
including power flow analysis, phase retrieval and output feedback control problems, using real
data. These applications underscore the versatility and practical impact of our optimization
methods across multiple domains.

The chapter is structured as follows: Section 7.1 presents our first case study, involving power
systems, showcasing how our algorithms can be used and applied to solve the static power flow
problem. Next, in Section 7.2, we turn to the phase retrieval, a crucial problem in fields like optics
and signal processing, where our algorithms excel at reconstructing signals with minimal error
and computational overhead. Finally, Section 7.3 is devoted to the study of control systems and
we illustrate how our numerical optimization algorithms can be applied in solving hard output
feedback control problems.

7.1 Power flow analysis

The reliable delivery of electrical energy is a cornerstone of modern society, underpinning the
operation of critical infrastructure, industries, and households. To maintain a stable and efficient
power system, engineers must understand how electrical power flows through the network. This
understanding is the essence of power flow analysis, a foundational technique in power systems
engineering.

Power flow analysis, sometimes referred to as load flow analysis, is used to evaluate the distribu-
tion of electrical power within a network, ensuring it meets the required demand and operational
standards. It involves calculating the voltages at various points in the system and the corre-
sponding active (real) and reactive power flows. These calculations provide insights into the
network’s performance, allowing for effective management, planning, and optimization of the
power system.

In a typical power system, buses represent nodes where components like generators, loads, and
transformers are connected, while lines represent the electrical connections between these nodes.
The power flow problem involves determining the voltage magnitudes and angles at each bus,
given a specific set of known values for power generation, load, and the system’s topology. This
information is used to ensure that the system operates within safe limits, to identify power
losses, and to guide decisions related to system expansion and reconfiguration.

A power system with N buses requires solving a set of nonlinear equations derived from Kirch-
hoff’s laws and network admittances. The solution provides a complete picture of the system’s
behavior, including voltage levels, active and reactive power generation and consumption, and
power flows across transmission lines.

Consider a steady-state power system with N buses (see e.g., Figure 7.1 for the IEEE 14 bus
system). This implies that the voltages, active and reactive powers are assumed to be constant
and not time-dependent. We denote vi, pi and qi the complex voltage, active power and reactive
power for the i bus, respectively. Let Y := G + jB be the admittance matrix and denote p =
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(p1, · · · , pN ), q = (q1, · · · , qN ) and v = (v1, · · · , vN ). Given a complex load vector s := sR+ jsI ,
then the power flow analysis problem is to find v = (v1, · · · , vN ) such that [29]:

F (v) = s, F (v) = p+ jq = diag(vvHY H), (7.1)

where recall that (·)H is the Hermitian transpose and v is described by its magnitude u and
its phase θ. Finding the complex voltage v is a critical parameter in bus system analysis and
operation, influencing load allocation, equipment performance, system stability, and network
planning. Proper voltage management is essential for maintaining a reliable and efficient elec-
trical distribution system. This problem is equivalent to the following optimization problem:

Figure 7.1: Representation of the IEEE 14-bus system [36].

min
v=(u,θ)

‖F (v)− s‖

s.t. u ∈ [umin, umax], θ ∈ [−π, π].

In [29], the authors provide a similar formulation for the power flow analysis problem, but using
‖ · ‖2 as the merit function to measure the distance between the objective function F (·) and the
desired complex load s. As we have mentioned earlier (see Section 5.1), it is beneficial to use
only ‖ · ‖ as the merit function. Further, since we have (see e.g., [125]):

pi(u, θ) =
N∑
k=1

uiuk (G(i, k)cos(θi − θk) +B(i, k)sin(θi − θk)) ,

qi(u, θ) = −
N∑
k=1

uiuk(B(i, k)cos(θi−θk)+G(i, k)sin(θi−θk)),

and using the notation

C = {(u, θ) : u ∈ [umin, umax], θ ∈ [−π, π]},

then, the previous optimization problem is equivalent to the following optimization problem:

min
x=(u;θ)∈C

f(x) =

∥∥∥∥p(x)− sRq(x)− sI

∥∥∥∥ . (7.2)

The most efficient algorithm for solving the (unconstrained) power flow analysis problem is the
Newton method [126]. However, it may lead to poor performance when the initialization point is
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far from the optimum or the system is stressed (i.e., the problem is ill-conditioned). In a recent
paper, [29], the authors proposed a hybrid method that combines stochastic gradient descent
(SGD) and the Newton methods to overcome the numerical challenges in this problem. The
iterative process starts with the Newton algorithm, and if the method detect a divergence (e.g.,
when the condition number of the Jacobian deteriorates), then switch to the SGD algorithm.
After running a few SGD steps, switch again to the Newton iterations and repeat the process
until an (approximate) optimal solution is found. Since this hybrid algorithm cannot deal with
(simple) constraints as in (7.2), we propose to use our new method, RHOTA for p = 1 from
Chapter 5, and compare its performance with the projected gradient descent (PGD) method
applied to the problem:

min
x∈Rn

‖F (x)‖2 + IC(x), (7.3)

More precisely, the iterates of the PGD method are of the form [94]:

xk+1 = projC
(
xk −

1

L
∇F (xk)TF (xk)

)
.

In order to apply both methods, one needs to evaluate the gradient of the functions p(x) and
q(x). We have the following expressions for the derivatives of pi’s and qi’s:

∂pi
∂ui

= 2G(i, i) +
N∑
k=1
k ̸=i

uk (G(i, k)cos(θi − θk) +B(i, k)sin(θi − θk)) ,

∂pi
∂uk

= ui (G(i, k)cos(θi − θk) +B(i, k)sin(θi − θk)) , ∀k 6= i,

∂pi
∂θi

=
N∑
k=1
k ̸=i

ukui (−G(i, k)sin(θi − θk) +B(i, k)cos(θi − θk))

∂pi
∂θk

= −uiuk (−B(i, k)cos(θi − θk)−G(i, k)sin(θi − θk)) , ∀k 6= i,

∂qi
∂ui

= −2B(i, i)−
N∑
k=1
k ̸=i

uk (B(i, k)cos(θi − θk)−G(i, k)sin(θi − θk)) ,

∂qi
∂uk

= −ui (B(i, k)cos(θi − θk)−G(i, k)sin(θi − θk)) , ∀k 6= i,

∂qi
∂θi

=
N∑
k=1
k ̸=i

ukui (B(i, k)sin(θi − θk) +G(i, k)cos(θi − θk)) ,

∂qi
∂θk

= −ukui (G(i, k)cos(θi − θk) +B(i, k)sin(θi − θk)) , ∀k 6= i.

Hence, ∇F (x) ∈ R2N and we have:

∇F (x) =
N∑
i=1

∂pi(x)

∂x
(pi(x)− sR) +

∂qi(x)

∂x
(qi(x)− sI),

where:

∂pi(x)

∂x
=

(
∂pi(x)

∂u1
; · · · ; ∂pi(x)

∂uN
;
∂pi(x)

∂θ1
; · · · ; ∂pi(x)

∂θN

)
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∂qi(x)

∂x
=

(
∂qi(x)

∂u1
; · · · ; ∂qi(x)

∂uN
;
∂qi(x)

∂θ1
; · · · ; ∂qi(x)

∂θN

)
,

for i = 1 : N . Note that the Jacobian ∇F may be ill-conditioned.

Below, we illustrate the efficacy of RHOTA algorithm for p = 1, as detailed in Chapter 5,
comparing with PGD algorithm, utilizing multiple IEEE bus test cases from [36] (specifically,
IEEE 14 bus, IEEE 39 bus, IEEE 57 bus, and IEEE 118 bus). We select an optimal point x∗ ∈ C,
from which we generate sR = p(x∗) and sI = q(x∗) (also refer to [29]). Subsequently, we apply
RHOTA algorithm (for p = 1) to solve problem (7.2) and the PGD method to tackle problem
(7.3), where F is defined in (7.1). We then evaluate whether these algorithms can converge to x∗
from a feasible starting point. Both algorithms utilize a stopping criterion of ‖F (xk)‖ ≤ 10−3.
The results are depicted in Figure (7.2), illustrating the evolution of the function value ‖F (xk)‖
across iterations.

The plotted data indicates that initially, PGD method outperforms RHOTA method. However,
RHOTA method exhibits a significantly quicker convergence, requiring fewer iterations (up to
five times fewer) than the PGD method to attain the desired accuracy.
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Figure 7.2: Comparison between RHOTA (for p = 1) and PGD methods in terms of ‖F (x)‖
along iterations on several IEEE bus systems.

7.2 Phase retrieval

In various scientific and engineering fields, the ability to reconstruct a signal or image from
incomplete or indirect measurements is a fundamental challenge. One key problem in this area
is phase retrieval [127, 128], where the goal is to determine a complex signal from its magnitude
measurements, often derived from its Fourier transform or other linear transformations [129].
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This problem is common in optics [130], crystallography [131], astronomical imaging [132], speech
processing [133], computational biology [134] among other domains.

In many applications, direct measurement of complex signals is challenging due to technical
limitations, measurement noise, or physical constraints. For example, in X-ray crystallography
[131], only the magnitudes of the diffracted X-rays can be measured, while the phase information
is lost. Similarly, in optical systems [130], detectors often record the intensity of light without
direct access to its phase. Phase retrieval provides a means to reconstruct the missing phase
information, allowing the complete signal or image to be recovered.

The phase retrieval problem is inherently ill-posed, as multiple phase configurations can lead to
the same magnitude measurements. This ambiguity, combined with the nonlinear relationship
between phase and magnitude, makes phase retrieval a complex and challenging task. Re-
searchers have developed various algorithms and techniques to address these difficulties, ranging
from iterative optimization methods to deep learning approaches. Figure 7.3 illustrate the im-
portant of the Fourier phase.

Figure 7.3: The Significance of Fourier Phase: Two images, cameraman and Lenna, are subjected to
a Fourier transform. After swapping the phase information between these transformed im-
ages, they are then inverse Fourier transformed back to the spatial domain. The resulting
images reveal that the swapped phase information leads to an unexpected recombination,
highlighting the critical role that phase plays in the recovery and reconstruction of images.
This image is taken from [129].

The objective of phase retrieval is to reconstruct the original signal from its magnitude mea-
surements, which can be mathematically stated as [30]:

Find x ∈ Rn (or Cn) s.t. : zi = |〈ai, x〉|2, i = 1 : m, (7.4)

where ai ∈ Rn (or Cn) represents a known measurement vector and zi denotes a known mag-
nitude, for i = 1 : m. When a, x ∈ Cn, 〈a, x〉 := xHa, with xH the conjugate transpose of
x. Various approaches have been explored to tackle phase retrieval, with recent research focus-
ing on non-convex methods. For instance, in [30], the authors introduce the Wirtinger flow, a
gradient-based method that performs gradient descent on the objective function:

x 7→ 1

2m

m∑
i=1

(
|〈ai, x〉|2 − zi

)2
.

116



Chapter 7. Applications

Similarly, [32] proposes a modified objective and applies a gradient descent method to:

x 7→ 1

2m

m∑
i=1

(
|〈ai, x〉| −

√
zi

)2
.

Both approaches in [30, 32] rigorously demonstrate the exact retrieval of phase information from
a nearly minimal number of random measurements, achieved through careful initialization using
spectral methods. In a recent study [31], the authors address phase retrieval using a nonsmooth
l1 norm formulation:

x 7→ 1

2m

m∑
i=1

∣∣∣|〈ai, x〉|2 − zi∣∣∣ = 1

2m

∥∥xHQx− z∥∥
1
,

where xHQx = (xHQ1x, . . . , x
HQmx)

T and Qi = aia
H
i for i = 1 : m. This problem formulation

can be expressed as a composition f(x) = g(F (x)). To address this nonsmooth minimization
problem, [31] proposes a prox-linear method (equivalent to the RHOTA algorithm presented in
this paper for p = 1). The signal recovery in their procedure requires a stability condition that is
typically satisfied with a high probability for suitable designs Q, a bound on the operator ‖Q‖2,
and a well-initialized iterative process. The prox-linear method exhibits quadratic convergence
and achieves exact signal recovery if the number of measurements satisfies m = 2n. In the
following, we consider ai, x in Rn (note that if these quantities are complex vectors, then by
a proper change of variables the problem can be formulated over real vectors). In this paper,
inspired by [31], we consider the following nonsmooth composite minimization problem:

min
x∈Rn

f(x) := ‖xTQx− z‖, (7.5)

where xTQx :=
(
xTQ1x, · · · , xTQmx

)T and Qi = aia
T
i for i = 1 : m. In the sequel, we present

a higher-order proximal point algorithm (called HOPP) for solving this type of problems and
then proceed to analyze its convergence rate and efficiency.

Algorithm 9 HOPP Algorithm
Given x0, positive integer p and M > 0. For k ≥ 0 do:
Compute xk+1 solution of the following subproblem:

xk+1 ∈ arg min
x∈Rn

∥∥xTQx− z∥∥+ M

p+ 1
‖x− xk‖p+1. (7.6)

The ”argmin” in (7.6) refers to the set of global minimizers. Higher-order proximal point al-
gorithms have been considered recently in the literature. Indeed, the convergence rates have
been extensively studied, with works such as [135] focusing on the convex case and [20] in-
vestigating the nonconvex scenarios. Notably, the objective in (7.5) is weakly convex with
L := 2‖(‖Q1‖, · · · , ‖Qm‖)‖, as established in [56]. Therefore, for p = 1, the subproblem (7.6)
becomes strongly convex when M > L. However, if the constant M < L, one cannot ensure the
convexity of the subproblem (7.6) for p = 1. In the sequel, we show that when L is difficult to
compute, one can still employ convex optimization tools to solve the subproblem (7.6) for any
M > 0 and p = 1 or p = 2. Indeed, following the same reasoning as in Section 5.4, the global
solution of the (non)convex proximal subproblem (7.6) for p = 1 is:

xk+1 = xk −Hk,1(u)
−1gk(u),
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where we denote:

Hk,1(u) :=
m∑
i=1

2uiQi +
M

2
In, gk(u) :=

m∑
i=1

2uiQixk, lk(u) :=
m∑
i=1

ui(x
T
kQixk − zi),

with u representing the solution of the convex dual problem:

max
u∈F1

lk(u)−
1

2

〈
Hk,1(u)

−1gk(u), gk(u)
〉
,

where F1 := {u ∈ Rm : ‖u‖ ≤ 1 and Hk,1(u) � 0}.

Similarly, for p = 2, we have:

xk+1 = xk −Hk,2(u,w)
−1gk(u),

where Hk,2(u,w) :=
∑m

i=1 2uiQi +
w
2 In, with (u,w) is the solution of the following convex dual

problem:

max
(u,w)∈F2

lk(u)−
1

2

〈
Hk,2(u,w)

−1gk(u), gk(u)
〉
− 1

12M2
w3,

where F2 := {(u,w) ∈ Rm × R+ : ‖u‖ ≤ 1 and Hk,2(u,w) � 0}. Hence, our algorithm HOPP
can be easily implemented for any M > 0 and p = 1, 2 using standard convex optimization
tools (such as interior point methods [66]). Next, we establish the global convergence rate to a
stationary point for this algorithm:

Theorem 7.2.1. Let f be given as in (7.5) and let (xx)k≥0 be generated by HOPP algorithm.
Then, we have:

min
i=0:k

Sf (xi) ≤

(
(M(p+ 1)p)

1
p+1 (f(x0)− f∗)
k

p
p+1

)
.

Proof. From the definition of xk+1 in (7.6), we get:

f(xk+1) +
M

p+ 1
‖xk+1 − xk‖p+1 ≤ f(xk) and Sf (xk+1) ≤M‖xk+1 − xk‖p.

Hence, combining the last two inequalities, we get:

Sf (xk+1)
p+1
p ≤M

p+1
p
p+ 1

M

(
f(xk)− f(xk+1)

)
.

Summing up and taking the minimum, we get our statement. ■

In order to establish rapid local convergence, we introduce an additional assumption that is
related to sharpness or error bound condition for the objective function, as discussed in [31].

Assumption 7.2.2. There exists λ > 0 such that for all x ∈ Rn the objective function f defined
in (7.5), having the set of global minima X∗, satisfies:

f(x)− f(x∗) ≥ σ0 dist(0, X∗) dist(x,X∗) ∀x∗ ∈ X∗, with σ0 > 0.
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This condition has been proved to hold in the context of phase retrieval, see [31]. For instance,
it holds when the matrices Qi’s satisfy the following stability condition [31]:

‖(Qix)
2 − (Qiy)

2‖ ≥ σ̄0‖x− y‖ ‖x+ y‖ ∀x, y ∈ Rn, i = 1 : m, with σ̄0 > 0.

Next, we derive a fast convergence rate for HOPP algorithm under sharpness.

Theorem 7.2.3. Let f be defined as in (7.5) and satisfy Assumption 7.2.2. Moreover, let
(xk)k≥0 be generated by HOPP algorithm. Then, we have:

dist(xk, X∗)

dist(0, X∗)
≤
(

σ0(p+ 1)

Mdist(0, X∗)p−1

) 1
p

(
M

1
p dist(x0, X∗)

(σ0(p+ 1)dist(0, X∗))
1
p

)(p+1)k

.

Proof. Since xk+1 is the global minimum of (7.6), we have:

f(xk+1) ≤ min
x∈Rn

f(x) +
M

p+ 1
‖x− xk‖p+1 ≤ f(x∗) + M

p+ 1
‖x∗ − xk‖p+1.

Taking the infimum over x∗ ∈ X∗, we further obtain:

f(xk+1)− f(x∗) ≤
M

p+ 1
dist(xk, X∗)p+1.

Combining this inequality with Assumption 7.2.2, we get:

σ0(p+ 1) dist(0, X∗)dist(xk+1, X
∗) ≤Mdist(xk, X∗)p+1.

Dividing each side by dist(0, X∗)p+1, we get:

dist(xk+1, X
∗)

dist(0, X∗)
≤ Mdist(0, X∗)p−1

σ0(p+ 1)

(
dist(xk, X∗)

dist(0, X∗)

)p+1

.

Unrolling the last recurrence, yields our statement. ■

Note that if Mdist(x0, X∗)p < σ0(p + 1)dist(0, X∗), then faster convergence is guaranteed for
HOPP iterates with the increasing value of p. Note also that for p = 1, we recover the quadratic
convergence rate obtained in [31]. Furthermore, the flexibility in selecting the parameter M
is significant: given an arbitrary initial point x0 (not necessarily close to X∗), an appropriate
choice of M (i.e., sufficiently small) guarantees very fast convergence of HOPP iterates to the
global minima of (7.5).

Below, we present numerical simulations for solving the phase retrieval problem, using real
images from the collection of handwritten digits, accessible at [37]. The primary objective is to
evaluate the performance of HOPP method in image recovery and compare it with the prox-
linear method introduced in [31]. Given that [31] demonstrates perfect image recovery under
real-valued random Gaussian measurements, even when m = 2 × n, we adopt similar settings.
Specifically, we evaluate the performance of our method for p = 1, 2 and the prox-linear method
in [31], aiming to recover a digit image using Gaussian measurement vectors ai ∈ Rn and set
Qi = aTi ai for i = 1 : m with m = 2 × n. To initialize the process, we introduce some noise to
the real-digit image to generate the starting point x0. The stopping criterion for both methods
is set as f(xk) ≤ 10−4 or k ≥ 100. Each subproblem is solved using CVX [136].
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The results are presented in Figures 7.4 and 7.5. In Figure 7.4, we initialize the starting point
x0 (by adding some noise to the original image) to satisfy the constant relative error guarantee

dist(x0, x∗) <
σ0
L
‖x∗‖,

with L = ‖
(
‖a1‖2, · · · , ‖am‖2

)
‖, as presented in [31]. From Figure 7.4, it’s evident that both

algorithms achieve good recovery of the original image, with HOPP (p = 2) given the best error.
However, HOPP algorithm for p = 1, 2 is much faster than the prox-linear algorithm [31].

In Figure 7.5, we set the initial point x0 randomly, so that it does not satisfy the condition
dist(x0, x∗) < σ0

L ‖x
∗‖. Notably, Figure 7.5 illustrates that the prox-linear algorithm [31] fails to

recover the original image after 100 iterations. In contrast, HOPP algorithm (for both p = 1
and p = 2) is able to recover the original image for sufficiently small M . This highlights the
efficiency and robustness of HOPP algorithm. In cases where the true image x∗ is unknown, we
posit that the HOPP method’s flexibility, that follows from the free choice of the regularization
parameter M , allows it to perform effectively even with an initial point that is not necessarily
close to the true image. Such an initial point could be generated more affordably than the
methods proposed in [31, 30]. Finally, one can notice from Figures 7.4 and 7.5 the considerable
time taken by CVX to solve the convex subproblems. Thus, it would be interesting to explore
more efficient convex solvers for solving these subproblems. This aspect remains open for further
investigations.

Original image Initialization Prox-linear

error = 6.3e-6, cpu = 29, iter = 12

HOPP p=1

error = 2.5e-5, cpu = 27.4, iter = 8

HOPP p=2

error = 4.3e-6, cpu = 24.9, iter = 6

Original image Initialization Prox-linear

error = 8.2e-5, cpu = 27, iter = 8

HOPP p=1

error = 4.5e-5, cpu = 25, iter = 5

HOPP p=2

error = 6.5e-6, cpu = 26.2, iter = 3

Original image Initialization Prox-linear

error = 6.9e-4, cpu = 47, iter = 18

HOPP p=1

error = 1.7e-5, cpu = 23.2, iter = 3

HOPP p=2

error = 1.e-5, cpu = 29.2, iter = 3

Original image Initialization Prox-linear

error = 3.9e-4, cpu = 26.5, iter = 12

HOPP p=1

error = 2.7e-5, cpu = 15.5, iter = 5

HOPP p=2

error = 2.1e-5, cpu = 15.2, iter = 4

Figure 7.4: Performance of prox-linear method [31] and HOPP for p = 1 and p = 2 with M = 0.1 on
12× 12 digit images: initialization satisfying dist(x0, x∗) < ‖x∗‖σ0/L.
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Original image Initialization Prox-linear

error = 5.3, cpu = 80.1, iter = 100

HOPP p=1

error = 3.8e-8, cpu = 29.8, iter = 10

HOPP p=2

error = 1.2e-7, cpu = 26.4, iter = 8

Original image Initialization Prox-linear

error = 4.8, cpu = 80.6, iter = 100

HOPP p=1

error = 5.3e-7, cpu = 29.1, iter = 8
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error = 1.2e-6, cpu = 28.8, iter = 5

Original image Initialization Prox-linear

error = 5.4, cpu = 83.7, iter = 100

HOPP p=1

error = 1.2e-7, cpu = 35.8, iter = 8

HOPP p=2

error = 2.5e-8, cpu = 44.6, iter = 8

Original image Initialization Prox-linear

error = 5.1, cpu = 80.5, iter = 100

HOPP p=1

error = 4.e-7, cpu = 67.5, iter = 15

HOPP p=2

error = 1.7e-7, cpu = 69.5, iter = 13

Figure 7.5: Performance of prox-linear method [31] and HOPP for p = 1 and p = 2, with M = 0.01 on
12× 12 digit images: random initialization x0.

7.3 Static output feedback control

In modern control systems, the ability to regulate the behavior of dynamic systems is crucial for a
wide range of applications, from robotics and aerospace to industrial processes and automotive
systems [137, 138, 139]. At the heart of control theory lies the concept of feedback, where
system outputs are used to inform control inputs, guiding the system toward desired performance
and stability. One of the fundamental challenges in this field is the output feedback control
problem, where control actions are based solely on observable outputs rather than complete
state information.

The static output feedback control problem is one of the most well-known problems is control
theory and many other control problems can be posed into this framework, see [140, 34] and the
surveys [141, 142, 140] (e.g., it has been observed that the design of a dynamic output feedback
controller can be reduced to solving a static output feedback control problem [143, 144]). The
problem can be simply stated as follows: find a static output feedback control strategy that
ensures the closed-loop system is asymptotically stable. This problem is significant because
static output feedback controllers are generally more cost-effective to implement and are often
more reliable in practice.

A typical output feedback control problem involves designing a control strategy that uses ob-
served outputs to generate control inputs. This is in contrast to state feedback control, where
the full state vector is assumed to be known. Output feedback control is inherently more chal-
lenging due to the limited information available to the controller and the need to estimate
unobserved states or system parameters. The problem becomes even more complex when the
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system dynamics are nonlinear or uncertain. Consider the continuous time linear system:

ẋ = Ax+Bu, (7.7)
y = Cx,

where x ∈ Rnx is the state vector, u ∈ Rnu is the control input, and y ∈ Rny is the measured
output, with A, B, and C being matrices with constant real entries of appropriate dimensions.
We say that the system (7.7) is output feedback stabilizable if there exists a static output
feedback control law:

u = Ky,

such that the resulting matrix A+BKC has all its eigenvalues with negative real parts. Matrices
that meet this condition are described as stable.

The pair (A,B) is considered stabilizable if the following condition holds:

rank[λInx−A B] = nx, ∀λ ∈ σ(A) ∩ C−,

where σ(A) is the spectrum of A and C− denotes the closed right half plane. This condition is
weaker than the following controllability condition:

rank[λInx−A B] = nx, ∀λ ∈ σ(A),

which is equivalent to the Kalman controllability condition:

rank[B AB A2B · · · Anx−1B] = nx.

It is well known that dynamical system (7.7) with C = Inx (i.e., y = x) is stabilizable via a
state feedback controller u = Kx if and only if there exist matrices X � 0 and K, of compatible
dimensions, such that:

X(A+BK) + (A+BK)TX ≺ 0.

Further, multiplying this inequality from both sides by W = X−1 we get:

(A+BK)W +W (A+BK)T ≺ 0.

Now, defining L = KW , then we obtain:

AW +WAT +BL+ LTBT ≺ 0.

In fact, it is a well-known result [140] that the previous linear matrix inequality (LMI) is feasible
in the variables (W,L) if and only if the pair (A,B) is stabilizable, and in this case the state
feedback controller u = LW−1x = Kx stabilizes system (7.7). To find a solution to this problem
or to declare the problem unfeasible, if solutions do not exist within a given precision, is a simple
task that can be easily carried out with efficient convex optimization algorithms [140].

However, when neither C nor B are different from identity matrix, the problem becomes in fact
a very difficult one because the resulting matrix inequality is not convex in general as described
below. In fact, to the best of our knowledge, conditions for exact stabilizability are unknown in
this case. The static output feedback stabilization problem for the system described by equation
(7.7) hinges on determining the feasibility of finding a static control law denoted by u = Ky,
whereby the closed-loop system ẋ = Ax+ BKCx = (A+ BKC)x achieves stability, indicating
that the matrix A+BKC is stable [145]. If an output feedback controller exists to satisfy this
condition, the system (7.7) is said to be output stabilizable, with the matrix K providing a
solution to the problem. The subsequent theorem establishes conditions for this scenario:
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Theorem 7.3.1. (Theorem 1 in [145]) The system (7.7) is static output feedback stabilizable if
there exist X � 0 and K satisfying the following matrix inequality:

(A+BKC)TX +X(A+BKC) ≺ 0. (7.8)

We can reformulate this bilinear matrix inequality as an equality by introducing a matrix Q � 0
such that

(A+BKC)TX +X(A+BKC) +Q = 0.

We can solve this bilinear matrix equality by minimizing the norm of

F (X,K,Q) := (A+BKC)TX +X(A+BKC) +Q,

which is a second order polynomial in X,K and Q. Thus, the minimization problem to be solved
becomes:

min
X,Q,K

‖F (X,K,Q)‖F + h(X,Q), (7.9)

where ‖ · ‖F denotes the Frobenius norm of a matrix and

h(X,Q) = 1Sn+(X) + 1Sn+(Q),

with Sn+ the cone of positive definite matrices.

We evaluate the performance of RHOTA algorithm for solving static output feedback control
problem (7.9) using data from the COMPleib library available at [34]. Let us note that ∇2F ,
where F is given in (7.9), is constant, and therefore ∇F is Lipschitz (i.e., p = 1). Hence, problem
(7.9) is a particular case of the composite problem considered in Chapter 5 and consequently our
algorithm RHOTA with p = 1 can be used for solving the output feedback control problem with
mathematical guarantees for finding stationary points. We can effectively implement RHOTA
algorithm by utilizing the Fréchet differentiable of the matrix function F [146]. Thus, at each
iteration of RHOTA with p = 1, the following convex subproblem needs to be solved:

(Xk+1,Kk+1, Qk+1) = argmin
X≻0,Q≻0,K

∥∥∥F (Xk,Kk, Qk) +∇F (Xk,Kk, Qk)[X−Xk,K−Kk, Q−Qk]
∥∥∥
F

+
M

2

∥∥∥[X −Xk,K −Kk, Q−Qk]
∥∥∥2
F
,

where the directional derivative is:

∇F (Xk,Kk, Qk)[X −Xk,K −Kk, Q−Qk]

=∇XF (Xk,Kk, Qk)[X −Xk] +∇KF (Xk,Kk, Qk)[K −Kk] +∇QF (Xk,Kk, Qk)[Q−Qk],

with the following expressions

∇XF (Xk,Kk, Qk)[X −Xk] = (A+BKkC)
T (X −Xk) + (X −Xk)(A+BKkC)

∇KF (Xk,Kk, Qk)[K −Kk] = (B(K −Kk)C)
TXk +Xk(B(K −Kk)C)

∇QF (Xk,Kk, Qk)[Q−Qk] = Q−Qk.

We compare RHOTA algorithm for p = 1 with BMIsolver [33]. BMIsolver is specifically designed
to optimize the spectral abscissa of the closed-loop system ẋ = (A + BKC)x (refer to [33] for
comprehensive details). In Table 7.1, we report the number of iterations, CPU time, the obtained
solution K, and the maximum eigenvalue of the real part of the matrix A+BKC (called spectral
abscissa). The stopping criterion utilized is

‖F (Xk,Kk, Qk)‖ ≤ 10−3
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and we use CVX to solve the subproblem in RHOTA [136]. Both algorithms, BMIsolver and
RHOTA, commence with identical initial values X0 and K0. Each test case from COMPleib
is initialized differently. From the data presented in Table 7.1, it is evident that RHOTA
outperforms BMIsolver [33] in terms of both, CPU time and number of iterations. Moreover,
RHOTA yields a slightly smaller value for the spectral abscissa, showcasing the efficiency of the
proposed method. The superior performance of RHOTA algorithm (in time and iterations) can
be attributed to two facts: first, by linearizing inside the norm, RHOTA leverages a portion of
the Hessian of the objective, while BMIsolver solely utilizes first-order information; second, our
formulation (7.9) satisfies the KL property (2.16) (as composition of semi-algebraic functions,
i.e., the 2-norm and quadratic functions, see [46] and also [146]), which, according to Theorem
4.3.5, ensures fast convergence for RHOTA.

RHOTA (p = 1) BMIsolver [33]
iter time(s) K MEV iter time(s) K MEV

ac3 (nx = 5) 4 1.08
(

2.7633 −0.4060 −2.6203 −0.0605
−0.1880 1.5857 −3.5001 1.8552

)
-0.89 29 18

(
2.9051 −0.4423 −2.7215 0.0038
−0.1084 1.7357 −3.3988 1.9438

)
-0.85

ac8 (nx = 9) 6 1.8
(
1.0279 −0.4365 −1.15850.0085 0.46237

)
-0.44 43 5.6

(
1.0279 −0.4365 −1.15850.0085 0.46237

)
-0.44

cm1_is (nx = 20) 12 5.7
(
−19.98
−10.97

)
-4.3e−3 22 10.6

(
−17.85
−22

)
-4.2e−3

cm2_is (nx = 60) 19 533
(
−5
−7.87

)
-1.07e−2 114 2691

(
−5.6
−7.18

)
-1.02e−2

dis1 (nx = 8) 24 7.6


3.125 2.817 −7.584 −5.446
2.817 3.71 −4.244 −4.256
−7.584 −4.244 −0.435 1.352
−5.446 −4.256 1.352 2.877

 -1.363 100 13.4


3.125 2.817 −7.584 −5.446
2.817 3.71 −4.244 −4.256
−7.584 −4.244 −0.435 1.352
−5.446 −4.256 1.352 2.877

 -1.363

dlr2 (nx = 40) 7 21.6
(

1.85 1.06
−0.27 −2.09

)
-5e−3 120 477

(
−5.6 5.5
5.5 −1.4

)
-5e−3

eb1 (nx = 10) 8 3.5 -0.551 -0.066 26 9.2 -47.377 -0.0212

he1 (nx = 4) 5 1.4
(
0.981
4.469

)
-0.22 12 2.1

(
0.883
4.022

)
-0.22

he4 (nx = 8) 15 8.5


−2.12 3.87 1.47 −0.26 −0.04 0.65
3.75 −14.55 −1.48 1.14 5.35 2.03
−0.67 2.20 2.23 0.07 −2.79 −0.14
−7.98 −3.28 −12.94 −0.12 5.37 0.23

 -0.77 89 40.5


−2.12 3.87 1.47 −0.26 −0.04 0.65
3.75 −14.55 −1.48 1.14 5.35 2.03
−0.67 2.20 2.23 0.07 −2.79 −0.14
−7.98 −3.28 −12.94 −0.12 5.37 0.23

 -0.77

hf2d_is5 (nx = 5) 5 1.4
(

5.8 2.7 0.08 −0.28
−1.18 −1.07 1.41 2.04

)
-5.17 14 3.5

(
5.8 2.7 0.08 −0.28
−1.18 −1.07 1.41 2.04

)
-5.17

hf2d_cd4 (nx = 7) 6 1.8
(
−3.2 −3.7
−3.5 −3.9

)
-2.5 78 17

(
−3.3 −4.3
−4.3 −5.5

)
-2.48

hf2d_cd5 (nx = 7) 8 2.5
(
−0.23 −0.21
−1.38 −0.43

)
-1.79 257 19.6

(
−0.57 −1.54
−1.54 −3.65

)
-1.37

je2 (nx = 21) 16 11.6

 1.328 0.087 −0.090
−1.462 0.1918 1.927
1.893 0.4696 2.7049

 -2.51 47 56.5

 1.328 0.087 −0.090
−1.462 0.1918 1.927
1.893 0.4696 2.7049

 -2.51

lah (nx = 48) 5 51 -6 -2.69 99 1037.3 -5.99 -2.69

rea1 (nx = 4) 5 1.4
(
−1.740 4.229 −2.175
5.147 −16.347 6.728

)
-3 22 3.5

(
−1.740 4.229 −2.175
5.147 −16.347 6.728

)
-3

wec2 (nx = 10) 14 8.5

−1.0733 −0.34109 0.9588 0.0988
0.1757 −0.1420 −1.39116 −0.10933
0.9581 0.80115 0.19483 0.66336

 -1.3796 40 28.9

 0.2788 0.09640 34.9399 0.06837
−0.3283 −0.1234 −0.07736 −0.00402
0.0329 8.6410 1.3824 0.79048

 -0.6829

Table 7.1: Performance of RHOTA algorithm for p = 1 and BMIsolver [33] using data from COMPleib
library

(
MEV = maximum eigenvalue of the real part of (A+BKC)

)
.

7.4 Conclusions

We have applied the algorithms proposed in the previous chapters to solve various problems
arising in complex systems, including power flow analysis, phase retrieval, and output feedback
control, using real data. Our numerical simulations demonstrate the efficiency of these algo-
rithms in real-world applications. Notably, our results show that these algorithms outperform
some state-of-the-art methods and solvers from existing literature in terms of CPU time and/or
the number of iterations.
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Composite optimization problems, particularly those where the merit function exhibits only
convexity, pose significant hurdles in terms of finding solutions. The inherent complexity in
such scenarios often leads to computational inefficiencies and limits the practical applicability
of existing algorithms. However, by introducing additional assumptions on the merit function,
we can alleviate some of these challenges and facilitate the resolution of these problems. By
leveraging these assumptions, in this thesis we have developed novel methods that streamline
the optimization process and enable more efficient and effective solutions to be obtained.

At the forefront of our contributions is the development of higher-order methods for solving
the intricacies of composite optimization problems under additional assumptions on the merit
function. Our algorithms represent a significant advancement in the field, offering enhanced pre-
cision and efficacy in solving complex optimization tasks. Through meticulous experimentation
and theoretical analysis, we have demonstrated the effectiveness of our numerical approaches in
achieving global convergence and improving computational efficiency. We have demonstrated
the implementability of the proposed algorithms in some particular settings, which ensures their
practical viability in real-world applications. By bridging the gap between theory and practice,
our research strives to make substantial contributions to the field of optimization, facilitating
the resolution of challenging composite optimization problems in diverse domains.

In summary, as potential extensions, delving deeper into the following points holds promise:

• In Chapter 3, an intriguing opportunity presents itself for further refinement: exploring
avenues to enhance the GCHO method within convex settings. For example, the in-
corporation of a Nesterov momentum step holds promise in potentially accelerating the
convergence rate of GCHO. Such enhancements could not only broaden the applicability
of the algorithm but also contribute to advancing the field of optimization by addressing
challenges specific to convex scenarios.

• In Chapters 3 and 5, an interesting avenue for exploration emerges: investigating whether
convergence in the sequence can be derived for our algorithms under the KL property.
By shedding light on this aspect, we can deepen our understanding of the algorithms’
performance and potentially uncover new insights into their applicability across diverse
optimization landscapes.

• In Chapter 4, an open question remains: can one derive a theoretical convergence rate
for an accelerated MTA incorporating the Nesterov momentum step? This query delves
into the realm of optimization theory, probing the potential for further enhancing the
efficiency and efficacy of MTA method. Clarifying this aspect could shed light on the
algorithm’s behavior and pave the way for more faster optimization strategies for solving
convex composite problems.

• Given that the convergence rates discussed in both Chapter 3 and Chapter 5 hinge on
an inexact solution necessitating the computation of a global minimum of a nontrivial
Taylor approximation within a ball, a compelling avenue for future exploration arises: is
it feasible to relax this condition? This inquiry delves into the intricacies of optimization
methodology, questioning the necessity of strict requirements for achieving convergence.
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• In Chapters 3, 4, and 5, we present an efficient implementation of the proposed methods for
the case p = 2. It would be interesting to explore the possibility of solving the subproblems
efficiently for p ≥ 3. By delving into this aspect, we can potentially extend the applicability
of our algorithms using higher-order information, thus enriching the field of optimization
with enhanced methodologies.

• Furthermore, an promising direction for future research lies in extending all the obtained
results to a stochastic framework, as discussed for example in [147]. This endeavor holds
promise for broadening the applicability of our findings, potentially unlocking new insights
into optimization methodologies in stochastic setting with wide range of applications in
machine learning.
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