—
TraDE-OPT|
PR A

ADMM for Structured Optimization
Problems: Formulations and Applications

Yassine Nabou
Ph.D. Student

University Politehnica Bucharest, Romania
Faculty of Automatic Control and Computer science

October 2021

Yassine Nabou TraDE-OPT



TraDE-OPT)

Application |: Video Surveillance
ADMM Algorithm

Robust PCA Formulation
Numerical Simulation

Application Il: Graphical Lasso
B ADMM-Based Formulation
Bibliography

Yassine Nabou TraDE-OPT



Video Surveillance
®00

Video surveillance

Yassine Nabou TraDE-OPT



Video Surveillance
oceo

Video surveillance

NTEHN,,
4% &)

¥
%—-? TraDE-OPT}
e

- We often need to identify activities that stand out from the
background.

- In order for a car to decide what to do next: accelerate, apply
brakes or turn, it needs to know where all the objects are
around the car and what those objects are.
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Stack the video frames as columns of matrix (denote by X which
have the dimension n x p ):

Frames umages)—\ﬂ
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Formulation of the problem
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w® X Data of frames (€ R"*P).

Robust PCA Formulation problem that we want to find L and S
such:

X=L+S

L: Stationary background as low rank matrix (rank one).
S: The moving objects in the foreground.

Originale Frame Low_Rank " L"

Sparse"S"

Yassine Nabou TraDE-OPT



ADMM Algorithm
®00

W
TraDE-OPT

Consider the following convex minimization problem:

in f
min £(x) + g(Ax)

Can be written us:

min f(x) +&(y)

s.it. Ax=y
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=% The augmented Lagrangian:

Lo(xy.A) = F(x) +g(0) + (A Ax = y) + 2] Ax =y
p Lo 1 2
=f || Ax — A= =]A
() + £0) + S1Ax —y + A7 = A
Alternative direction method of multipliers (ADMM):

X1 = arg min L,(X, yk, Ak)
Y41 = arg myin Lp(Xk+1, Y5 Ak)

M1 = A+ o (AXkg1 — Yir1)
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Convergence

e The residual [|Axc11 — yk+1|| converge to 0 (with rate O(%)).

e The objective function (f(xk+1) + g(yk+1)) converge to
f* + g*(with rate O(%))
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**" The problem can be solved via convex programming:

_—
min (Ll + XS]

)

subject to X=L+S

IIIl« is the Nuclear norm (Sum of the singular values).

p 1 1
Lp(x,y,A) = |[Lllx + Al S[l + SlIL+ 5 = X+ ;AH% - 27)”/\”%

the scalar product define in R"P by: (A, B)r = trace(A' B).
Define the norm: ||Al|g = +/trace(AT A)
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Applying ADMM to Robust PCA:
. p 1 5
Licss = argmin ¢ L+ SI1L+ 5= X+ ~Ad

. 1
Skt = argmin {Ausul O+ 5 X+ pAkH%}

Ais1 = N+ p(Lig1 + Sk+1 — X)
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Optimality conditions:
P Loz o
\% ||Lk+1H*+§||Lk+1+5k—X+;/\kllp =0

A= UZV’', Then V||A|. = UV .
Indeed, we have:
||Al|« = trace(X)
Then,
I(||All+) _ trace(0X)
0A  0A
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A= d(U)ZV' + UH(Z)V' + UZd(V)
implies that:
9% = U'0(A)V — U'd(U)L — a(V)V'
then
trace(9X) = trace(U' d(A)V)— trace(U d(U)X) — trace(Ld(V)V')

since we have: d(V'V) =0, Then dV'V = —V'9V,
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implies that:

trace(LOVV') =0

( multiply a diagonal matrix with an anti-symmetric matrix is zero).
then, we get:

AAll+) trace(U' 9(A)V) B trace( VU A) _u
oA 0A B 0A B
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If the svd of L1 = Ukp1Zk41 V) then we have:

/ 1
U1V tp (Lk+1 + Skp1 — X + p/\k) =0

1 ' 1
Uks1 |:Zk+1 + PH:| Vk+1 =X-5— ;/\k

if the svd of X — S — 2Ax = U1 TV, 4
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which gives:

1
zk-i—17L ;H:T

finally:
1
Lyqi=U ['T‘ - pﬂ] %4
+

Where UTV' = SVD(X — S — 1)

Yassine Nabou TraDE-OPT



Robust PCA
0000000e

Robust Principal Component Analysis

1
LKH::SVT1<X——Sk—Ak>
, p
1
Skt1=35Tx (X — Lkv1 — Ak)
p p
N1 = N+ p(Lis1 + Sk — X)
if for some matrix we have A=UXV’, then:

SVTA(A) = U[Z — Al]4. V/

and
X,'J—)\ if X,'J > A
X,'J + A if X,'J < =X
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Simulation

"'T:T%imulation in Matlab for the video data: "visiontraffic.avi”
(Data base in Matlab )
- 40 frames.
- dimension of images (gray scale) 90 x 180
- We stop at the criterion rank(Lx41) = 1.

frame number 30:

—
TraDE-OPT

Original frame Background Miving object
{Low Rank] { Sparse )
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-
TraDE-OPT

Original frame Background Moving object
(Low_Rank) ( Sparse )

Remarks:
e converge when p is small, diverge if p is big.

e takes 25 minutes to show the result with laptop i3, 10th Gen,
4GB ram.
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%ngesidual:: norm(Lnew + Snew — X)
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“*“Function value:=||L||. + A[|S]1
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Function Values
©

0 10 20 30 40 50 60 70 80 920 100
Number of iterations
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atlab code:
18 SeArG
1- clear all
2 - R=VideoReader ('vi
3
o
5 - [n,m]=size (X_Data);
6 — X = double(X_Data):
7= S=0*rand(n,m);
8- H=0*rand (n,m) ;
9 - rho=0.005;
10 - lamkbda=0.001;
11 - L=rand(n,m) ;
12 - .01;
13 -
14 - crit2=1;
15 —
16 -  rank Lerank(L):
17 - while( critl > epsilon && crit2 > epsilon && rank L~=1)
18 - [Lnew, Snew, Hnew] =ADMM (X, 5, H, rhe, laxbda) ;
13 - rank_L=rank (Lnew)
20 — critl =norm(Lnew+Snew-X)
21 — crit2 =rho*norm(Snew-3)
22 - risud=[risud cricl]:
23 % upd
24 — if (critl >10%czit2) ,rho=24rho;
25 - elseif (crit2 >10*critl) , rho=rho/2;
26 —
27 —
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e 28 T=Tnew; I,
29 — S=3new;
30 - H=Hnew;
31 - end
32 %% show the i eme image
z8l|= for j =1:
34 - Img_bg=Lnew(:,3);
35S Img =Snew(:,3);
36 — Img org=X Data(:,j):
37 - figure (3)
a8 — imshow ( [reshape (Img_org, 60,90), uint8(reshape (Img_bg, 60,90)), reshape(Img,€0,90)]);
ag|= nold on
40 - end
41 - figure 2
42 - plot (risud(2:i),'-b'):
43
44 SADMM fun
45 function[L, S, K]=ADMM (X, SO, IM, rho, lambda)
46 % pute the Low rank
47 - [U, Sigm, V1=svd(X-50- (1/rho) *LM) ;
a8 - Sigm=max (Sigm- (1/rho),0):
45 - L=U*Sigm*V';
50 tcompute the spar
Eill= 5=X-L- (1/rho) *1M;
52 — [n,m]=size (5);
53 =
54 —
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e 50 fcompute the sparse S P M 2 Lo
Sl |= 5=X-L- (1/rho) *IM;
gal|= [n,m]=size(S);
53 - for i=l:n
54 — for 3=l:m
55 — if (S(1,3)> lambda/rho) , 5(i,3)=5(1,3) - (lambda/rho):
56 — elseif (S(i,3)< -lambda/rho) ,5(1,3)=5(1,3) + (lambda/rho):%|
57 — else ,514,3)=0;
53 — end
- end
= end
= E=LM+rho* (L+5-X) ;
g =
63
[ function[M]=Matrix video(wvid, framel, frame2)
€5 -  Img = read(vid,framel):
& —  Img = rgb2gray(Img):
67 -  Img = Img(1:60,1:30):
68 — M = Img(:):
69 — for i=framel+l:frame2
70 - frames = read(vid,i): % ¢ i
71— frames = rgb2gray(frames);
72 — frames = frames(1:60,1:90);
73 — M=[M frames(:)];
74 = end
75 -  end
76
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=% Motivation .
Sparse inverse covariance estimation: goal is to discover the direct

connections between a set of nodes in a networked system based
upon the observed node activities:

e Brain imaging data: how the brain works in health and disease
by using the latest neuroimaging data (brain imaging).
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w® - Let X = (x1, -, Xxp) € R"™P a multivariate normal 5

distribution.
Y: Correlation matrix associated to Xpxp.

Y= E[(X - EX)T(X - E(X))]

Y 1. determinate the conditional independence,
(since the density function:
f(X) = Cst x exp(XE71X) = [T cst x exp(xZ; 1x;) if Z71 is

sparse).
- The complexity of computing the inverse of ¥ is o(n3),
If nis big: Impossible of computing the inverse !

Yassine Nabou TraDE-OPT



Graphical lasso
ocoe
Graphical lasso
W
TraDE-OPT)

NTEHN,,
4% &)

.............

%.,.?Approximate ¥~ by solving the following minimization problem§@

m@in —log det(©) + (©,%X) + \||O]1
s.t. ©>0

Optimality conditions:

—O. 1+ X+ \(sign(©.)) =0
which gives that (if A is chosen small enough):

Yy =01
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ADMM for solving our graphical lasso problem:
Ok41 = argmin < —lo det(@)—i—BH@—\U +1/\ +12H2
k+1 = ge>0 g > k P k P F

. 1
Vi = argrmjn { W + Z01c — ¥ + A2

Ner1 =N+ p(Oky1 — Wiq1)
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1 1
ek+1 == Fp (Wk - */\k - O')
p p

1
Vi1 =5T, <@k+1 + /\k>
2 P
Ner1 =N+ p(Opp1 — Viy1)

For X = UAV' = 0, once has:
. , 4
diag(Ai + (/A5 + ;)
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